首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[1,2]上连续,在(1,2)内可导,且f′(χ)≠0,证明:存在ξ,η,ζ∈(1,2),使得
设f(χ)在[1,2]上连续,在(1,2)内可导,且f′(χ)≠0,证明:存在ξ,η,ζ∈(1,2),使得
admin
2019-08-23
28
问题
设f(χ)在[1,2]上连续,在(1,2)内可导,且f′(χ)≠0,证明:存在ξ,η,ζ∈(1,2),使得
选项
答案
令F(χ)=lnχ,F′(χ)=[*]≠0,由柯西中值定理,存在ξ∈(1,2),使得 [*] 由拉格朗日中值定理得ln2-ln1=[*],其中η∈(1,2), f(2)-f(1)=f′(ζ)(2-1)=f′(ζ),其中ζ∈(1,2), 故[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/n2A4777K
0
考研数学二
相关试题推荐
设n维(n≥3)向量组α1,α2,α3线性无关,若向量组lα2-α1,mα3-2α2,α1-3α3线性相关,则m,l应满足条件_______.
()
设f(x)=,则下列关于f(x)的单调性的结论正确的是()
设x与y均大于0,且x≠y,证明:
已知摆线的参数方程为其中0≤t≤2π,常数a>0.设该摆线一拱的弧长的数值等于该弧段绕z轴旋转一周所围成的旋转曲面面积的数值.求a的值.
求曲线与x轴围成的区域绕x轴、y轴形成的几何体体积.
曲线y=(x-1)(x-2)和x轴围成平面图形,求此平面图形绕y轴一周所成的旋转体的体积.
求f(x,y,z)=x+y—z2+5在区域Ω:x2+y2+z2≤2上的最大值与最小值.
设p(x)在[a,b]上非负连续,f(x)与g(x)在[a,b]上连续且有相同的单调性,其中D={(x,y)|a≤x≤b,a≤y≤b},判别I1=(x)f(y)p(y)g(y)dxdy的大小,并说明理由.
随机试题
下列哪些属于行政违法的特征()。
下列哪项是腺垂体功能减退症最常见的病因
患者男性,17岁。拔牙两天后,出现寒战,高热,伴咳嗽、咳痰,迁延未愈,12天后突然咳出大量脓臭痰及坏死组织,并有咯血。查体:体温39℃,脉搏89次/分,右肺部叩诊呈浊音,可于右肺底听到湿哕音,实验室检查:WBC28×109/L,中性粒细胞0.92,核左移明
关于执行程序中的管辖权异议,说法正确的是:()
在某工程网络计划中,工作M的最早开始时间和最迟开始时间分别为第12d和第15d,其持续时间为6d。工作M有3项紧后工作,它们的最早开始时间分别为第21d,第24d,第28d,则工作M的自由时差为( )d。
如果相关系数r为正,说明()。
某公司5月发生下列业务(期初无在产品):(1)生产甲产品领用材料50000元,生产乙产品领用材料40000元,车间一般性耗用材料1000元。(2)分配本月职工工资100000元,其中,甲产品生产工人工资60000元,乙产品生产工人工资2
特殊情况越级向上行文,应抄送给()。
负荷在预计值附近随机变动的概率分布属于()。
科学家发现,儿童时期不接触细菌和病菌,是5岁以下人群糖尿病病例近年来急剧增加的主要原因之一。而那些生活在农村的孩子由于更早接触到带菌的物质,有更多机会与宠物相处,患过敏症、哮喘和湿疹等疾病的几率反而很低。所以,将细菌消灭得过于彻底的环境可能反而会给儿童的健
最新回复
(
0
)