首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
在椭圆的第一象限部分上求一点P,使该点处的切线,椭圆及两坐标轴所围图形的面积最小.
在椭圆的第一象限部分上求一点P,使该点处的切线,椭圆及两坐标轴所围图形的面积最小.
admin
2019-02-20
77
问题
在椭圆
的第一象限部分上求一点P,使该点处的切线,椭圆及两坐标轴所围图形的面积最小.
选项
答案
过椭圆上任意点(x
0
,y
0
)的切线的斜率y’(x
0
)满足 [*] 切线方程为 [*] 分别令y=0与x=0,得x,y轴上的截距: [*] 于是该切线与椭圆及两坐标轴所围图形的面积(图2.14)为 [*] 问题是求:[*]的最小值点,其中[*]将其代入S(x)中,问题可进一步化为求函数f(x)=x
2
(a
2
-x
2
)在闭区间[0,a]上的最大值点. 由f’(x)=2x(a
2
-2x
2
)=0(x∈(0,a))得a
2
-2x
2
=0,[*]注意f(0)=f(0)=0,f(x
0
)>0,故[*]是f(x)在[0,a]的最大值点.因此[*]为所求的点.
解析
转载请注明原文地址:https://kaotiyun.com/show/nFP4777K
0
考研数学三
相关试题推荐
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=1,,试证:对任何满足0<k<1的常数k,存在点ξ∈(0,1),使得f’(ξ)=一k.
设A为n阶实对称矩阵,其秩为r(A)=r.(1)证明:A的非零特征值的个数必为r(A)=r.(2)举一个三阶矩阵说明对非对称矩阵上述命题不正确.
已知A=有四个线性无关的特征向量,求A的特征值与特征向量,并求A2004.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,其中α1≠0,若Aα1=α2,Aα2=α3,…,Aαn—1=αn,Aαn=0.(1)证明:α1,α2,…,αn线性无关.(2)求A的特征值、特征向量.
设f(x)=,g(x)=∫0xf(t)dt,求:(1)y=g(x)的水平渐近线.(2)求该曲线y=g(x)与其所有水平渐近线,y轴所围平面图形的面积.
已知x的概率密度f(x)=,试求:(1)未知系数a;(2)X的分布函数F(x),(3)x在区间(0,)内取值的概率.
设X1和X2是任意两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)和f2(x),分布函数分别为F1(x)和F2(x),则()
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是
设平均收益函数和总成本函数分别为AR=a—bQ,C=Q3一7Q2+100Q+50,其中常数a>0,b>0待定.已知当边际收益MR=67,且需求价格弹性Ep=一时总利润最大.求总利润最大时的产量,并确定a,b的值.
随机试题
关于中国瓷文化,下列说法不正确的是()。
关于。肾功能衰竭少尿期护理措施的叙述,正确的是
下列化妆品成分对皮肤有明显的刺激性,除了
下列关于秋水仙碱的作用机制描述,正确的是()
初步评审主要审查的内容有______。
社会支持评定量表的统计指标主要包括()
加拿大研究人员对北美不同地区平均年龄29.4岁的308位志愿者(其中l98位是女性)进行了调查,结果发现50.7%的人有互联网拖延症,而且上网时间的47%不是用来工作,而是用来拖延工作。研究表明:白领的拖延情况比蓝领更严重,.被雇用的白领比自由经营的白领更
阅读以下文字,完成下面问题地方保护主义主要是指地方政府及其职能部门利用其行政职权对外地商家进入本地市场、本地企业及资本流出加以限制或歧视的行为。其[a]是滥用行政职权限制市场竞争,获取地方利益。地方保护主义形成的主要原因在于:(1)地方利益是地方
“以学生为本”“让学生自发学习”“排除对学习者自身的威胁”的教学模式属于()。
在关系数据库中,用来表示实体之间联系的是【】。
最新回复
(
0
)