首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=1,,试证:对任何满足0<k<1的常数k,存在点ξ∈(0,1),使得f’(ξ)=一k.
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=1,,试证:对任何满足0<k<1的常数k,存在点ξ∈(0,1),使得f’(ξ)=一k.
admin
2017-07-26
115
问题
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=1,
,试证:对任何满足0<k<1的常数k,存在点ξ∈(0,1),使得f’(ξ)=一k.
选项
答案
作辅助函数F(x)=f(x)+kx,则F(x)在[0,1]上连续,在(0,1)内可导,且F’(x)=f’(x)+k. 由f(0)=f(1)=1,[*]<F(0)<F(1). 由介值定理,存在点c∈([*],1),使得F(c)=F(0).因此,F(x)在[0,c]上连续,在(0,c)内可导,且F(0)=F(c).由洛尔定理,存在点ξ∈(0,c)[*](0,1),使得F’(ξ)=f’(ξ)+k=0,即f’(ξ)=一k.
解析
这是讨论函数在某点取定值的问题,可转化为导函数的存在性问题.
f’(ξ)=一k→f’(ξ)+k=0
→[f(x)+kx]’
x=ξ
=0
→F(x)=f(x)+kx的导数在(0,1)内有零点.
于是,我们只要验证F(x)在[0,1]上或其子区间上满足洛尔定理的全部条件.
转载请注明原文地址:https://kaotiyun.com/show/puH4777K
0
考研数学三
相关试题推荐
设E,F是两个事件,判断下列各结论是否正确,如果正确,说明其理由;如果不正确,给出其反例.(1)P(E∩F)≤P(E|F);(2)P(E∩F|F)=P(E|F).
设n阶矩阵A与B等价,则必有().
设y(x)为微分方程y’’-4y’+4y=0满足初始条件y(0)=0,y’(0)=2的特解,则∫01y(x)dx=__________.
已知非齐次线性方程组x1+x2+x3+x4=-1;4x1+3x2+5x3-x4=-1;ax1+x2+3x3+bx4=-1;有3个线性无关的解.求a,b的值及方程组的通解.
设A为n阶矩阵,对于齐次线性方程(I)An=0和(Ⅱ)An+1x=0,则必有
已知线性方程组(Ⅰ)a,b为何值时,方程组有解?(Ⅱ)方程组有解时,求出方程组的导出组的一个基础解系:(Ⅲ)方程组有解时,求出方程组的全部解.
设A是m×n阶矩阵,下列命题正确的是().
设A是m×n矩阵,则下列4个命题①若r(A)=m,则非齐次线性方程组Ax=b必有解;②若r(A)=m,则齐次方程组Ax=0只有零解;③若r(A)=n,则非齐次线性方程组Ax=b有唯一解;④若r(A)=n,则齐次方程组Ax=0只有零解中正确的是
设b为常数.求曲线L:的斜渐近线l的方程;
随机试题
对银行报送的基本存款账户、临时存款账户和预算单位专用存款账户的开户资料,中国人民银行应于()个工作日内进行合规性审核,符合开户条件的,予以核准。
Doctorssayangercanbeanextremelydamagingemotionunlessyoulearnhowto【C1】______withit.Theywarnthatangryhostilefe
病人张某,女,48岁,严重烧伤,于上午8时开始输液共3600ml,每分钟滴注90滴。请估计何时完成输液( )。
案情:四川成都的一名退休职工把某电视台主持人赵某告上了法庭。他以赵某在接受某杂志专访时的言论有一句“他有一个团伙”为由,向法院提起侵犯名誉权之诉;而且索赔的标的就是一分钱,此案被法院裁定不予受理。最近,除了有“一分钱官司”,还有“一元钱官司”。例如,北京市
企业以分立或者合并的方式改组,成立了对上市公司控股的公司,则无形资产产权的处置方式有( )。
企业将作为存货的房地产转换为采用公允价值模式计量的投资性房地产时,转换日其公允价值大于账面价值的差额,应确认为()。
以公允价值计量的金融资产可以是单项资产,也可以是资产组合或者资产和负债的组合。()
A.上牙弓狭窄,腭盖高拱B.开和牙间隙C.颜面不对称D.开唇露齿,上前牙前突,下前牙舌倾、拥挤E.前牙反,下颌前突口呼吸习惯引起()。
如图6—3,已知△ABC为等腰直角三角形,∠A=90°,△BDC为等边三角形,则可确定△BDC的面积为(1)△ABC的周长为(2)△ABC的面积为2
计算∫(3+3x-x2)/[(2x+1)(1+x2)]dx.
最新回复
(
0
)