首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2010年] 设P为椭球面S:x2+y2+z2一yz=1上的动点.若S在点P处的切平面与xOy面垂直,求点P的轨迹C,并计算曲面积分,其中∑是椭球面S位于曲线C上方的部分.
[2010年] 设P为椭球面S:x2+y2+z2一yz=1上的动点.若S在点P处的切平面与xOy面垂直,求点P的轨迹C,并计算曲面积分,其中∑是椭球面S位于曲线C上方的部分.
admin
2019-04-08
59
问题
[2010年] 设P为椭球面S:x
2
+y
2
+z
2
一yz=1上的动点.若S在点P处的切平面与xOy面垂直,求点P的轨迹C,并计算曲面积分
,其中∑是椭球面S位于曲线C上方的部分.
选项
答案
(1)令F(x,y,z)=x
2
+y
2
+z
2
一yz一1为椭球面S的方程,设点P的坐标为(x,y,z). 由题设条件知,曲面在点P处的切平面法向量为 n
1
=(F’
x
,F’
y
,F’
z
)=(2x,2y—z,2z—y). 又xOy平面的法向量为,n
2
=(0,0,1),因点P处的切平面垂直于xOy平面,于是,n
1
⊥n
2
,即n
1
·n
2
=0,故y=2z,此为点P的坐标所满足的一个方程. 又因点P在曲面S上,所以点P的坐标满足曲面S的方程x
2
+y
2
+z
2
一yz=1,于是动点P的轨迹方程为 [*] 为简化起见,将z=y/2代入第一式可得轨迹C的方程为 [*] (它是椭圆柱面与平面的交线) (2)下面计算曲面积分,为此将曲面积分转化为二重积分.先将被积表达式化简. 由题设知,曲面积分[*]中积分曲面∑是椭球面S位于曲线C上方的部分,即位于平面y=2z上方的部分,因此在∑上有y≤2z.于是|y一2z|=2z一y,即 [*] 在曲面∑的方程x
2
+y
2
+z
2
一yz=1两端分别对x,y求偏导数(此时z=z(x,y)),得到 [*] 将曲面∑向xOy面投影,得投影区域D
xy
={(x,y)|x
2
+(3/4)y
2
≤1}.又因 [*] 故 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/nJ04777K
0
考研数学一
相关试题推荐
(2017年)微分方程y"+2y′+3y=0的通解为___________。
(2009年)设an为曲线y=xn与y=xn+1(n=1,2,…)所围成区域的面积,记求S1与S2的值。
(2003年)过坐标原点作曲线y=lnx的切线,该切线与曲线y=lnx及x轴围成平面图形D。(I)求D的面积A;(Ⅱ)求D绕直线x=e旋转一周所得旋转体的体积V。
(2012年)
(2015年)已知函数f(x,y)=x+y+xy,曲线C:x2+y2+xy=3,求f(x,y)在曲线C上的最大方向导数。
(2003年)曲面z=z2+y2与平面2x+4y—z=0平行的切平面的方程是_____________。
设矩阵当a为何值时,方程AX=B无解、有唯一解、有无穷多解?在有解时,求解此方程。
设二维随机变量(X,Y)在区域D={(x,y)|0<x<1,x2<y<}上服从均匀分布,令(Ⅰ)写出(X,Y)的概率密度;(Ⅱ)问U与X是否相互独立?并说明理由;(Ⅲ)求Z=U+X的分布函数F(z)。
[2018年]已知微分方程y’+y=f(x),其中f(x)是R上的连续函数.若f(x)=x,求方程的通解.
[2012年]设A,B,C是随机事件,A与C互不相容,P(AB)=1/2,P(C)=1/3,=______.
随机试题
北宋著名文学家欧阳修的号是()
违反《中华人民共和国动物防疫法》规定,未经检疫,向无规定动物疫病区输入动物、动物产品的,由动物卫生监督机构责令改正,处()以上()以下罚款;情节严重的,处1万元以上10万元以下罚款
根据《建设工程监理规范》(GB/T50319—2013),总监理工程师应及时签发工程暂停令的有()。
从第一期起,在一定时期内每期期初等额收付的系列款项是()。
受到前蜀王建礼敬,赐号“禅月大师”的著名僧人是()。
沙眼的主要传播途径是()
自然界已知的最硬物质,素有“硬度之王”之称的是()。
假设二维随机变量(X,Y)在矩形区域G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布.记(Ⅰ)求U和V的联合分布;(Ⅱ求U和V的相关系数ρ.
Whatisthespeakermainlytalkingabout?
Thinkbeforeyoupost.Youmightnotbeawareofhowmuchinformationyou’re【C1】______.That’sthemessagefromthefounders
最新回复
(
0
)