首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2010年] 设P为椭球面S:x2+y2+z2一yz=1上的动点.若S在点P处的切平面与xOy面垂直,求点P的轨迹C,并计算曲面积分,其中∑是椭球面S位于曲线C上方的部分.
[2010年] 设P为椭球面S:x2+y2+z2一yz=1上的动点.若S在点P处的切平面与xOy面垂直,求点P的轨迹C,并计算曲面积分,其中∑是椭球面S位于曲线C上方的部分.
admin
2019-04-08
53
问题
[2010年] 设P为椭球面S:x
2
+y
2
+z
2
一yz=1上的动点.若S在点P处的切平面与xOy面垂直,求点P的轨迹C,并计算曲面积分
,其中∑是椭球面S位于曲线C上方的部分.
选项
答案
(1)令F(x,y,z)=x
2
+y
2
+z
2
一yz一1为椭球面S的方程,设点P的坐标为(x,y,z). 由题设条件知,曲面在点P处的切平面法向量为 n
1
=(F’
x
,F’
y
,F’
z
)=(2x,2y—z,2z—y). 又xOy平面的法向量为,n
2
=(0,0,1),因点P处的切平面垂直于xOy平面,于是,n
1
⊥n
2
,即n
1
·n
2
=0,故y=2z,此为点P的坐标所满足的一个方程. 又因点P在曲面S上,所以点P的坐标满足曲面S的方程x
2
+y
2
+z
2
一yz=1,于是动点P的轨迹方程为 [*] 为简化起见,将z=y/2代入第一式可得轨迹C的方程为 [*] (它是椭圆柱面与平面的交线) (2)下面计算曲面积分,为此将曲面积分转化为二重积分.先将被积表达式化简. 由题设知,曲面积分[*]中积分曲面∑是椭球面S位于曲线C上方的部分,即位于平面y=2z上方的部分,因此在∑上有y≤2z.于是|y一2z|=2z一y,即 [*] 在曲面∑的方程x
2
+y
2
+z
2
一yz=1两端分别对x,y求偏导数(此时z=z(x,y)),得到 [*] 将曲面∑向xOy面投影,得投影区域D
xy
={(x,y)|x
2
+(3/4)y
2
≤1}.又因 [*] 故 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/nJ04777K
0
考研数学一
相关试题推荐
(2013年)已知极限其中k,c为常数,且c≠0,则()
(2012年)求幂级数的收敛域及和函数。
(2006年)将函数展开成x的幂级数。
(2004年)设有方程xn+nx一1=0,其中n为正整数,证明此方程存在唯一正实根xn,并证明当α>1时,级数收敛。
证明n阶矩阵相似。
设A,B,C均为n阶矩阵,若AB=C,且B可逆,则()
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α2,α3,α4线性无关,α1=2α2一α3。若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
设随机变量X的概率密度为f(x)=对X进行独立重复的观测,直到第2个大于3的观测值出现时停止。记Y为观测次数。(Ⅰ)求Y的概率分布;(Ⅱ)求E(Y)。
(2018年)过点(1,0,0),(0,1,0),且与曲面z=x2+y2相切的平面为
[2012年]设A为三阶矩阵,P为三阶可逆矩阵,且P-1AP=.若P=[α1,α2,α3],Q=[α1+α2,α2,α3],则Q-1AQ=().[img][/img]
随机试题
举世闻名的“四大公害事件”促使日本于1967年制定了_______,开始走上综合且有计划地防治公害的道路。
在预算的执行过程中自动延伸,使预算期永远保持在一年,这种预算称为
myc家族编码产物的作用正确的是
清醒的口服毒物中毒者,洗胃首选的方法是
某公司拟进行股票投资,计划购买A、B、C三种股票,并分别设计了甲、乙两种投资组合。已知三种股票的β系数分别为1.5、1.0和0.5,它们在甲种投资组合下的投资比重分别为50%、30%和20%;乙种投资组合的风险收益率为3.4%。同期市场上所有股票的平均收
国务院教育行政部门主管全国的教师工作。()
未婚女青年张某经人介绍,认识王某,张某发现王某吸毒,于是提出分手。王某不同意.并威胁说如果张某不同意和他结婚,就杀死张某全家。张某被逼无奈,嫁给王某,该婚姻在成立时属于()。
某游泳池有A、B、C三个进水管,先开A、B两管,3小时后,关闭A管打开C管,又过了3小时,关闭B、C两管,经测算,还需开A管注水半小时或者开B管注水45分钟才可将游泳池注满。已知A、B两管注水1小时相当于C管注水2小时,问三管齐开,多长时间可以将游泳池注满
Whatdowelearnaboutthebloodtemperatureofawhale?
ToothersandthemselvestheBritishhaveareputationforbeingconservativenotinnarrowpoliticalsense,butinthesenseof
最新回复
(
0
)