首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶实对称矩阵,且存在正交矩阵Q= , 使得QTAQ=, 又令B=A2+2E,求矩阵B.
设A为三阶实对称矩阵,且存在正交矩阵Q= , 使得QTAQ=, 又令B=A2+2E,求矩阵B.
admin
2016-05-17
61
问题
设A为三阶实对称矩阵,且存在正交矩阵Q=
,
使得Q
T
AQ=
,
又令B=A
2
+2E,求矩阵B.
选项
答案
由Q
T
AQ=[*] 得A的特征值为λ
1
=2,λ
2
=-1,λ
3
=1,且λ
1
=2对应的特征向量为ξ
1
=[*] 由A
T
=A得B
T
=(A
2
+2E)
T
=(A
2
)
T
+2E=A
2
+2E=B,即B为实对称矩阵. 显然B的特征值为λ
1
=6,λ
2
=λ
3
=3,且B相应于特征值λ
1
=6的特征向量为ξ
1
=[*] 设B的相应于λ
2
=λ
3
=3的特征向量为ξ=[*] ,因为实对称矩阵不同特征值对应的特征向量正交,所以ξ
1
T
ξ=0,即x
1
+x
2
+x
3
=0,于是B的相应于特征值λ
2
=λ
3
=3的线性无关的 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/nO34777K
0
考研数学二
相关试题推荐
已知函数f(x)在[0,1]上连续,在(0,1)内可导,f(0)=f(1)=0,且存在点x0∈(0,1)使f(x0)>x0.证明:存在ξ∈(0,1),使得f’(ξ)=1.
求不定积分。
设A,B皆为n阶矩阵,则下列结论正确的是().
下列矩阵中属干正定矩阵的是
设,其中D={(x,y)|0≤x≤1,0≤y≤1),[a]表示不超过a的最大整数,则有().
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y″+a1(x)y′+a2(x)y=f(x)的三个线性无关解,则该方程的通解为().
设an=∫0π/4tannxdx.对任意的参数λ,讨论级数的敛散性,并证明你的结论.
求函数的单调区间和极值,并求该函数图形的渐近线。
微分方程xy’+y=xex满足y(1)=1的特解为________。
(2010年试题,18)一个高为1的柱体形贮油罐,底面是长轴为2a,短轴为2b的椭圆,现将贮油罐平放,当油罐中油面高度为时(如图1—3-3),计算油的质量.(长度单位为m,质量单位为kg,油的密度为常数ρ,其单位为kg/m3)
随机试题
Manypeoplewronglybelievethatwhenpeoplereacholdage,theirfamiliesplacetheminnursinghomes.Theyareleftinthe【C1】
A、Herrigoroustrainingindeliveringeloquentspeeches.B、Herlifelongcommitmenttodomesticandglobalissues.C、Hewidesprea
关于睾丸肿瘤的论述,下列哪项是正确的
女,20岁,近1个半月来干咳伴有低热,自觉乏力。听诊右上锁骨下区有固定的湿啰音。怀疑其肺结核。病人在治疗过程中,判断结核化疗效果,最重要的指标是()。
女性,25岁,未婚,妇科检查发现右侧附件区4cm囊性包块,活动佳。血清CA12520U/ml,B,型超声为单房囊性肿中物,此例最可能的诊断是
患者心中烦热,急躁失眠,口舌糜烂疼痛,口渴,舌红,脉数,经诊断为()。
双代号网络计划中,如果计划工期等于计算工期,且工作i-j的结束节点j在关键线路上,则工作i-j的自由时差( )。
知情权是指公民有权知道他应该知道的事情,国家应该最大限度地确认和保障公民知悉、获取信息的权利,尤其是政务信息的权利。根据上述定义,下面与知情权无关的是()。
在考生文件夹下存在一个数据库文件“samp2.accdb”,里面已经设计好三个关联表对象“tStud”“tCourse”和“tScore”,以及表对象“tTemp”。试按以下要求完成设计。创建一个查询,查找5号入校的学生,显示其“学号”“姓名”“性别”
A、Shegetsillatthesametimeeveryyear.B、Shedoesn’tgetenoughexercise.C、Sheoftenhasdifficultysleeping.D、She’ssick
最新回复
(
0
)