首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
向量组α1,α2,…,αs线性无关的充要条件是( ).
向量组α1,α2,…,αs线性无关的充要条件是( ).
admin
2021-11-15
32
问题
向量组α
1
,α
2
,…,α
s
线性无关的充要条件是( ).
选项
A、α
1
,α
2
,…,α
s
都不是零向量
B、α
1
,α
2
,…,α
s
中任意两个向量不成比例
C、α
1
,α
2
,…,α
s
中任一向量都不可由其余向量线性表示
D、α
1
,α
2
,…,α
s
中有一个部分向量组线性无关
答案
C
解析
若向量组α
1
,α
2
,…,α
s
线性无关,则其中任一向量都不可由其余向量线性表示,反之,若α
1
,α
2
,…,α
s
中任一向量都不可由其余向量线性表示,则α
1
,α
2
,…,α
s
一定线性无关,因为若α
1
,α
2
,…,α
s
线性相关,则其中至少有一个向量可由其余向量线性表示,故选(C).
转载请注明原文地址:https://kaotiyun.com/show/nYy4777K
0
考研数学二
相关试题推荐
在t=0时,两只桶内各装10L的盐水,盐的浓度为15g/L,用管子以2L/min的速度将净水输入到第一只桶内,搅拌均匀后的混合液又由管子以2L/min的速度被输送到第二只桶内,再将混合液搅拌均匀,然后用1L/min的速度输出,求在任意时刻t>0,从第二只桶
设u=u(x,y,z)连续可偏导,令.若,证明:u仅为r的函数。
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.设ξ1,ξ2,...,ξr与η1,η2,...,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,...,ξr,η1,η2,...,ηs线性无关。
设(I)a1,a2,a3,a4为四元非齐次线性方程组BX=b的四个解,其中,r(B)=2.(I)与(II)是否有公共的非零解?若有公共解求出其公共解。
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又且AB=O,求方程组AX=0的通解。
设有方程组AX=0与BX=0,其中A,B都是m×n阶矩阵,下列四个命题:(1)若AX=0的解都是BX=0的解,则r(A)≥r(B)(2)若r(A)≥r(B),则AX=0的解都是BX=0的解(3)若AX=0与BX=0同解,则r(A)=r(B)(4
设A为n阶矩阵,若Ak-1a≠0,而Aka=0.证明:向量组a,Aa,...,Ak-1a线性无关。
设A是三阶矩阵,a1,a2,a3为三个三维线性无关的列向量,且满足Aa1=a2+a3,Aa2=a1+a3,Aa3=a1+a2.求矩阵A的特征值。
已知三阶矩阵A的三个特征值为1,2,3,则(A-1)*的特征值为_________.
设φ1(x),φ2(x)为一阶非齐次线性微分方程y’+P(x)y=Q(x)的两个线性无关的特解,则该方程的通解为().
随机试题
函数y=lnarcsinx的连续区间为___________.
血友病关节炎,正确的摄影体位是
甲硝唑支链氨基酸
男性,40岁,突起眩晕,频繁呕吐,枕部疼痛。查体:颈项强直,左侧周围性面瘫,右侧共济失调,眼球震颤。该患者最可能的疾病是
根据《企业会计准则第36号一关联方披露》的规定,下列表述正确的有()。
遇到问题时,导游不应对旅游者进行直接、正面的说服,而应采用间接或旁敲侧击的方式进行劝说,这种说服方式称之为()。
在培训过程中(),是使培训工作取得成功的关键之举。
三间房社区于2016年7月1日下午,在小区内联合社区幼儿园共同举办了有关家庭教育知识的讲座——“原生家庭”早教知识讲座。此次活动社区请到了朝阳区教育分院的专家苑媛老师来为广大居民进行讲解。讲座的内容重点围绕典型家庭的案例剖析,强调每一对父母都是孩子的原生家
水力:煤炭:发电
以下ASCII码值最大的是
最新回复
(
0
)