首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
向量组α1,α2,…,αs线性无关的充要条件是( ).
向量组α1,α2,…,αs线性无关的充要条件是( ).
admin
2021-11-15
77
问题
向量组α
1
,α
2
,…,α
s
线性无关的充要条件是( ).
选项
A、α
1
,α
2
,…,α
s
都不是零向量
B、α
1
,α
2
,…,α
s
中任意两个向量不成比例
C、α
1
,α
2
,…,α
s
中任一向量都不可由其余向量线性表示
D、α
1
,α
2
,…,α
s
中有一个部分向量组线性无关
答案
C
解析
若向量组α
1
,α
2
,…,α
s
线性无关,则其中任一向量都不可由其余向量线性表示,反之,若α
1
,α
2
,…,α
s
中任一向量都不可由其余向量线性表示,则α
1
,α
2
,…,α
s
一定线性无关,因为若α
1
,α
2
,…,α
s
线性相关,则其中至少有一个向量可由其余向量线性表示,故选(C).
转载请注明原文地址:https://kaotiyun.com/show/nYy4777K
0
考研数学二
相关试题推荐
设函数f(x)在[0,+∞)内可导,f(0)=1,且f’(x)+f(x)-=0.证明:当x≥0时,e-x≤f(x)≤1.
以y=C1ex+ex(C2cosx+C3sinx)为通解的三阶常系数齐次线性微分方程为________.
设二元函数f(x,y)=|x-y|Φ(x,y),其中Φ(x,y)在点(0,0)处的某邻域内连续,证明:函数f(x,y)在点(0,0)处可微的充分必要条件是Φ(0,0)=0.
设z=z(x,y)满足.证明:.
设A是三阶矩阵,a1,a2,a3为三个三维线性无关的列向量,且满足Aa1=a2+a3,Aa2=a1+a3,Aa3=a1+a2.判断矩阵A可否对角化。
设A是三阶矩阵,a1,a2,a3为三个三维线性无关的列向量,且满足Aa1=a2+a3,Aa2=a1+a3,Aa3=a1+a2.求矩阵A的特征值。
当a,b取何值时,方程组有唯一解,无解,有无穷多解?当方程组有解时,求通解。
已知y1*=e﹣2x+xe﹣x,y2*=2xe﹣2x+xe﹣x,y3*=e﹣2x+xe﹣x+2xe﹣2x是某二阶线性常系数微分方程y’’+py’+qy=f(x)的三个解。(Ⅰ)求这个方程和它的通解;(Ⅱ)设y=y(x)是该方程满足y(0)=0,y’(0
微分方程dy/dx=y/(x+y4)的通解是.
设φ1(x),φ2(x)为一阶非齐次线性微分方程y’+P(x)y=Q(x)的两个线性无关的特解,则该方程的通解为().
随机试题
新建项目投资决策的关键是__________。
A气相色谱法B高效液相色谱法C十八烷基硅烷键合硅胶D红外分光光度法E差示扫描量热法DSC缩写是指
羊水过多是指凡在妊娠任何时期内羊水量超过
以下关于前牙3/4冠邻沟的说法中错误的是
女,50岁。唇红部有白色条纹状损害伴糜烂2周。检查:可见上下唇及前庭沟有树枝状白色网纹。若其伴有皮肤病损,其病损变现是()
护士小刘正准备注射用物时发现治疗盘内有碘渍,欲除去碘渍应选用的溶液是
下列常用比较法对其估价的包括()。
现代商业银行财务管理的核心是基于()的管理。
WhatWeDo我们做的事情TheHumourFoundationisanationalcharityestablishedin1997topromotethehe
IfthepopulationoftheEarthgoesonincreasingatitspresentrate,therewill【B1】______notbeenoughresourcesleftto【B2】_
最新回复
(
0
)