首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若α1,α2,α3,β1,β2都是四维列向量,且|A|=|α1,α2,α3,β1|=m,|B|=|α1,α2,β2,α3|=n,则|α3,α2,α1,β1+β2|为( )。
若α1,α2,α3,β1,β2都是四维列向量,且|A|=|α1,α2,α3,β1|=m,|B|=|α1,α2,β2,α3|=n,则|α3,α2,α1,β1+β2|为( )。
admin
2021-11-25
58
问题
若α
1
,α
2
,α
3
,β
1
,β
2
都是四维列向量,且|A|=|α
1
,α
2
,α
3
,β
1
|=m,|B|=|α
1
,α
2
,β
2
,α
3
|=n,则|α
3
,α
2
,α
1
,β
1
+β
2
|为( )。
选项
A、m+n
B、m-n
C、-(m+n)
D、n-m
答案
D
解析
|α
3
,α
2
,α
1
,β
1
+β
2
|=|α
3
,α
2
,α
1
,β
1
|+|α
3
,α
2
,α
1
,β
2
|
=-|α
1
,α
2
,α
3
,β
1
|-|α
1
,α
2
,α
3
,β
2
|
=-|α
1
,α
2
,α
3
,β
1
|+|α
1
,α
2
,β
2
,α
3
|
=n-m
转载请注明原文地址:https://kaotiyun.com/show/nay4777K
0
考研数学二
相关试题推荐
设A,B都是三阶矩阵,A相似于B,且|E-A|=|E-2A|=E-3A|=0,则|B-1+2E|=________.
设A,B为两个n阶矩阵,下列结论正确的是()。
设A=(a1,a2,...,am)其中a1,a2,...,am是n维列向量,若对于任意不全为零的常数k1,k2,...,km,皆有k1a1+k2a2,...+kmam≠0,则()。
设A,B为n阶矩阵,且r(A)+r(B)<n,证明:A,B有公共的特征向量。
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(-1,0,1)T.求A的其他特征值与特征向量。
设的一个特征值为λ1=2,其对应的特征向量为ξ1=.求常数a,b,c.
设A是n阶正定矩阵,证明:对任意的可逆矩阵P,PTAP为正定矩阵。
设A为n阶矩阵,证明:r(A)=1的充分必要条件是存在n维非零列向量a,Β,使得A=aΒT.
从抛物线y=x2-1上的任意一点M(t,t2-1)引抛物线y=x2的两条切线。(Ⅰ)求这两条切线的切线方程;(Ⅱ)证明这两条切线与抛物线y=x2所围图形的面积为常数。
设曲线y=f(x)在[a,b]上连续,则曲线y=f(x),x=a,x=b及x轴所围成的图形的面积S=[].
随机试题
乡村俱乐部型的领导方式位于管理方格图的()型。
开胸手术后的护理哪项是错误的
简述激素的使用原则和不良反应。
体内、外抗凝血作用的药物是
信用保险是保险人根据()的请求担保义务人信用的保险
英格兰有一童谣《起风了,小猫饿死了》:起风了,风把窗帘掀起来了。窗帘拍倒了花瓶,花瓶的水洒到地板上了。地板湿了,老婆婆滑倒了。她撞坏了椅子,木匠来修椅子了。木匠砍倒了一棵树,大树把面包师的房子砸坏了。面包师搬家了,老鼠没东西吃了。老鼠不来了一一小猫饿死了。
根据以下资料。回答下列题。目前水污染是世界性面临的难题。据某国1996年统计,全国废水排放量为412亿吨.比1990年增加30亿吨,其中工业废水330亿吨,比1990年增加了30亿吨,每万元产值工业废水排放量为399吨,工业废水占废水总量的80%
背景音乐:选择跟环境、气氛协调的轻柔、优雅的轻音乐或抒情乐曲来播放,使人感到温馨、和谐、融洽。下列与定义符合的是:
设随机变量X与Y相互独立,其分布函数分别为FX(x)与FY(y),则Z=max{X,Y}的分布函数FZ(z)是
(1)LarrySummersisright;thisyear’sFedsymposiuminJacksonHolewastriplydisappointing.Intheweeksbeforethegatherin
最新回复
(
0
)