首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若α1,α2,α3,β1,β2都是四维列向量,且|A|=|α1,α2,α3,β1|=m,|B|=|α1,α2,β2,α3|=n,则|α3,α2,α1,β1+β2|为( )。
若α1,α2,α3,β1,β2都是四维列向量,且|A|=|α1,α2,α3,β1|=m,|B|=|α1,α2,β2,α3|=n,则|α3,α2,α1,β1+β2|为( )。
admin
2021-11-25
63
问题
若α
1
,α
2
,α
3
,β
1
,β
2
都是四维列向量,且|A|=|α
1
,α
2
,α
3
,β
1
|=m,|B|=|α
1
,α
2
,β
2
,α
3
|=n,则|α
3
,α
2
,α
1
,β
1
+β
2
|为( )。
选项
A、m+n
B、m-n
C、-(m+n)
D、n-m
答案
D
解析
|α
3
,α
2
,α
1
,β
1
+β
2
|=|α
3
,α
2
,α
1
,β
1
|+|α
3
,α
2
,α
1
,β
2
|
=-|α
1
,α
2
,α
3
,β
1
|-|α
1
,α
2
,α
3
,β
2
|
=-|α
1
,α
2
,α
3
,β
1
|+|α
1
,α
2
,β
2
,α
3
|
=n-m
转载请注明原文地址:https://kaotiyun.com/show/nay4777K
0
考研数学二
相关试题推荐
设A,B都是三阶矩阵,A相似于B,且|E-A|=|E-2A|=E-3A|=0,则|B-1+2E|=________.
设a1,a2,Β1,Β2为三维列向量组,且a1,a2与Β1,Β1都线性无关。设,求出可由两组向量同时线性表示的向量。
设A为n阶矩阵,若Ak-1a≠0,而Aka=0.证明:向量组a,Aa,...,Ak-1a线性无关。
设A,B为n阶矩阵,且r(A)+r(B)<n,证明:A,B有公共的特征向量。
设A为m×n阶实矩阵,且r(A)=n,证明:ATA的特征值全大于零。
设A为n阶非奇异矩阵,a是n维列向量,b为常数,.证明PQ可逆的充分必要条件是aTA-1a≠b.
在空间直角坐标系的原点处,有一质量为M1的恒星,另有一质量为M2的恒星在椭圆上移动,问两恒星间万有引力大小何时最大,何时最小。
设0﹤x≤2时,f(x)=(2x)x;﹣2﹤x≤0时,f(x)=f(x+2)-3k。已知极限存在,求k的值。
求极限。
随机试题
人民法院对行政案件宣告判决或者裁定前,原告申请撤诉的,法院应当根据自愿原则,裁定准许。()
《移居》(其一)体现了陶渊明怎样的思想特点?
Youcanhavetoomuchofagoodthing,itseems—atleastwhenitcomestophysiotherapyafterastroke.Manydoctorsbelievetha
已知某基础工程施工双代号时标网络计划如下图所示,如果工作E实际进度延误了4周,那么施工进度计划工期延误()周。
商业银行在固定资产贷款的审批流程中应遵循的原则有()。
“一讲到底”——满堂灌;“一练到底”——满堂练;“一看到底”——满堂看;“一P(PPT)到底”——满堂放。四个“一”各有何弊端?
许多企业深受目光短浅之害,它们太关注立竿见影的结果和短期目标,以至于无法高瞻远瞩,往往使企业陷于被动甚至导致破产。因此,企业领导层的决策和行动应该以长期目标为主,不需过分关注短期目标。以下哪项如果为真,将最有力地削弱上述论证?
在一个学生表中要找出全部姓张的学生组成一个新表,应该使用的关系运算是()。
ThewholeoftheUnitedStatescheereditslatesthero,AshleySmith,withtheFederalBureauofInvestigationsayingitwaspla
Asanyonewhohastriedtoloseweightknows,realisticgoal-settinggenerallyproducesthebestresults.That’spartiallybecau
最新回复
(
0
)