首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,如果α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组AX=b的通解是________。
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,如果α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组AX=b的通解是________。
admin
2020-03-10
54
问题
设A是秩为3的5×4矩阵,α
1
,α
2
,α
3
是非齐次线性方程组Ax=b的三个不同的解,如果α
1
+α
2
+2α
3
=(2,0,0,0)
T
,3α
1
+α
2
=(2,4,6,8)
T
,则方程组AX=b的通解是________。
选项
答案
([*],0,0,0)
T
+k(0,2,3,4)
T
,k为任意常数
解析
由于r(A)=3,所以齐次方程组Ax=0的基础解系只含有4一r(A)=1个解向量。又因为
(α
1
+α
2
+2α
3
)一(3α
1
+α
2
)=2(α
3
一α
1
)=(0,一4,一6,一8)
T
是Ax=0的解,所以其基础解系为(0,2,3,4)
T
,由
A(α
1
+α
2
+2α
3
)=Aα
1
+Aα
2
+2Aα
3
=4b,
可知
(α
1
+α
2
+2α
3
)是方程组Ax=b的一个解,根据非齐次线性方程组的解的结构可知,其通解是
(
,0,0,0)
T
+k(0,2,3,4)
T
。
转载请注明原文地址:https://kaotiyun.com/show/neA4777K
0
考研数学二
相关试题推荐
求下列函数在已给条件下全微分的值:(1)函数z=x2y3,当x=2,y=-1,△x=0.02,△y=-0.01时.(2)函数z=exy,当x=1,y=1,△x=0.15,△y=0.1时.
已知向量α=(1,k,1)T是A=的伴随矩阵A*的一个特征向量,试求k的值及与α对应的特征值λ.
证明α1,α2,…,αs(其中α1≠0)线性相关的充分必要条件是存在一个αI(1<i≤s)能由它前面的那些向量α1,α2,…,αi-1线性表出.
设α为n维非零列向量,证明:A可逆并求A-1;
设f(χ)在[0,+∞)内二阶可导,f(0)=-2,f′(0)=1,f〞(χ)≥0.证明:f(χ)=0在(0,+∞)内有且仅有一个根.
计算n阶行列式
(1994年)设y=(1)求函数的增减区间及极值;(2)求函数图形的凹凸区间及拐点;(3)求其渐近线;(4)作出其图形.
设曲线y=ax2(a>0,x≥0)与y=1一x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形,问a为何值时,该图形绕x轴旋转一周所得的旋转体体积最大?最大体积是多少?
设A是n阶反对称矩阵。证明:A可逆的必要条件是n为偶数;当n为奇数时,A*是对称矩阵。
[2016年]设D是由曲线y=(0≤x≤1)与围成的平面区域,求D绕x轴旋转一周所得旋转体的体积和表面积.
随机试题
根据骨度分寸,除哪项外。两者间距都是9寸
A.运铁蛋白浓度降低B.血清铁浓度下降C.血红蛋白和红细胞比积下降D.血清铁浓度下降、运铁蛋白浓度降低和游离原卟啉浓度升高E.运铁蛋白浓度降低、游离原卟啉浓度升高符合铁减少期的指标为()
(2010年)下列各点中为二元函数z=x3一y3一3x2+3y一9x的极值点的是()。
下列连续梁(T构)的合龙、体系转换和支座反力调整的规定,符合规范的有()。
流转课税是以流转额为课税对象的税类,流转额包括()。
某企业于2015年5月1日采用融资租赁方式从租赁公司租入一台设备,设备款为50000元,租期为5年,到期后设备归企业所有。企业的资金成本率为10%。若租赁公司提出的租金方案有四个:方案A:每年年末支付15270元,连续付5年。方案B:
在某次旅游安全事故中,造成旅游者3人轻伤,经济损失3万余元,该事故属于()。
归因即对自我行为的原因分析,包括三个成分:内外源、稳定性和______。
为了保证其他主机能接入Internet,在如图1-4所示的host1eth1网卡“Internet连接共享”应如何选择?请为图1-2中eth1网卡配置Internet协议属性参数。IP地址:(1);子网掩码:(2);默认网关
WhenIheardthenoiseinthenextroom,Icouldn’tresisthaveapeep.
最新回复
(
0
)