首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,如果α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组AX=b的通解是________。
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,如果α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组AX=b的通解是________。
admin
2020-03-10
86
问题
设A是秩为3的5×4矩阵,α
1
,α
2
,α
3
是非齐次线性方程组Ax=b的三个不同的解,如果α
1
+α
2
+2α
3
=(2,0,0,0)
T
,3α
1
+α
2
=(2,4,6,8)
T
,则方程组AX=b的通解是________。
选项
答案
([*],0,0,0)
T
+k(0,2,3,4)
T
,k为任意常数
解析
由于r(A)=3,所以齐次方程组Ax=0的基础解系只含有4一r(A)=1个解向量。又因为
(α
1
+α
2
+2α
3
)一(3α
1
+α
2
)=2(α
3
一α
1
)=(0,一4,一6,一8)
T
是Ax=0的解,所以其基础解系为(0,2,3,4)
T
,由
A(α
1
+α
2
+2α
3
)=Aα
1
+Aα
2
+2Aα
3
=4b,
可知
(α
1
+α
2
+2α
3
)是方程组Ax=b的一个解,根据非齐次线性方程组的解的结构可知,其通解是
(
,0,0,0)
T
+k(0,2,3,4)
T
。
转载请注明原文地址:https://kaotiyun.com/show/neA4777K
0
考研数学二
相关试题推荐
在上半平面上求一条上凹曲线,其上任一点P(χ,y)处的曲率等于此曲线在该点的法线段PQ的长度的倒数(Q为法线与χ轴的交点),且曲线在点(1,1)处的切线与χ轴平行.
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是:f(a,b)=0,f’x(a,b)=0,且当r(a,
(Ⅰ)设f(x),g(x)连续,且,求证:无穷小∫0φ(x)f(t)dt~∫0φ(x)g(t)dt(x→a);(Ⅱ)求w={∫0x3ln(1+2sint)dt/[f0xln(1+2sint)dt]3}.
设A为三阶方阵,A的每行元素之和为5,AX=0的通解为k1,求Aβ.
[*]
设矩阵A=的特征值之和为1,特征值之积为-12(b>0).(1)求a、b的值;(2)求一个可逆矩阵P,使P-1AP=A为对角矩阵.
设α1=a,b为何值时,β可唯一表示为α1,α2,α3,α4的线性组合?
(06)已知非齐次线性方程组有3个线性无关的解.(1)证明方程组系数矩阵A的秩r(A)=2;(2)求a,b的值及方程组的通解.
显然,当x=±1,±2时,D=0;又D的次数为4,故可设D=a(x-1)(x+1)(x-2)(x+2),其中x4的系数为a. 又D中含x4的项为a11a22a33a44-a13a22a31a44=1×(2-x2)×1×(9-x2
计算(a>0),其中D是由曲线y=-a+和直线y=-χ所围成的区域.
随机试题
企业发生的一切支出都属于费用。()
格萨尔文化在国内外享有极高的声誉,其特征包括()。
《五代史伶官传序》中的“伶官”是指()
男性,64岁。30年前曾患右上肺结核,经INH、SM和PAS治疗约1年。5年前病灶复发,痰结核杆菌(++),应用2HRZ/4HR治疗,痰菌转阴,病灶吸收满意。近1个月咳嗽、痰血再次就诊。X线示右上肺前段阻塞性炎症,肺CT示前段支气管阻塞,无纵隔淋巴结肿大。
肺炎患者出现感染中毒性休克,此时首要处理是
基坑施工时的安全技术要求有()。
与期货一样,期权通常也是一种标准化的合约。目前,我国在股权分置改革中推出的金融衍生品种有()
1.6月23日傍晚时分,十年来最大一场雨“空袭”京城。雨一直下,越下越大,陶然亭地铁站变成了“水帘洞”,西客站附近的莲花桥下变成了“游泳池”,南二环主路右安门路段断路,在大望路、安华桥这些地方,那些底盘高的SUV(运动型越野车)或许还能涉水缓慢前
A、 B、 C、 D、 C
AUNSecurityCouncildelegationtravelstoSouthAfricaonthefirststopofanine-nationAfricantouraimedat______.
最新回复
(
0
)