首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[0,+∞)内二阶可导,f(0)=-2,f′(0)=1,f〞(χ)≥0.证明:f(χ)=0在(0,+∞)内有且仅有一个根.
设f(χ)在[0,+∞)内二阶可导,f(0)=-2,f′(0)=1,f〞(χ)≥0.证明:f(χ)=0在(0,+∞)内有且仅有一个根.
admin
2019-03-21
61
问题
设f(χ)在[0,+∞)内二阶可导,f(0)=-2,f′(0)=1,f〞(χ)≥0.证明:f(χ)=0在(0,+∞)内有且仅有一个根.
选项
答案
因为f〞(χ)≥0,所以f′(χ)单调不减,当χ>0时,f′(χ)≥f′(0)=1. 当χ>0时,f(χ)-f(0)=f′(ξ)χ,从而f(χ)≥f(0)+χ,因为[*][f(0)+χ]=+∞, 所以[*]f(χ)=+∞. 由f(χ)在[0,+∞)上连续,且f(0)=-2<0,[*]f(χ)=+∞,则f(χ)=0在(0,+∞)内至少有一个根,又由f′(χ)≥1>0,得方程的根是唯一的.
解析
转载请注明原文地址:https://kaotiyun.com/show/ZLV4777K
0
考研数学二
相关试题推荐
求的带皮亚诺余项的三阶麦克劳林公式.
设函数f(u,v)具有二阶连续偏导数,函数g(y)连续可导,且g(y)在y=1处取得极值g(1)=2.求复合函数z=f(xg(y),x+y)的二阶混合偏导数在点(1,1)处的值.
设A与B分别是m,n阶矩阵,证明
若α1,α2,α3线性无关,那么下列线性相关的向量组是
设α1,α2,…,αr和β1,β2,…,βs是两个线性无关的n维向量.证明:向量组{α1,α2,…,αr;β1,β2,…,βs}线性相关存在非零向量r,它既可用α1,α2,…,αr线性表示,又可用β1,β2,…,βs线性表示.
设非齐次方程组AX=β有解ξ1,ξ2,ξ3,其中ξ1=(1,2,3,4)T,ξ2+ξ3=(0,1,2,3)T,r(A)=3.求通解.
求曲线的一条切线l,使该曲线与切线l及直线x=0,x=2所围成图形的面积最小.
已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵(k为常数),且AB=0,求线性方程组Ax=0的通解.
设f(χ)=,求f(χ)的间断点并判断其类型.
设f(χ)在(a,b)上有定义,c∈(a,b),又f(χ)在(a,b)\{c}连续,c为f(χ)的第一类间断点.问f(χ)在(a,b)是否存在原函数?为什么?
随机试题
CT扫描发现左心后区类圆形“肿块”影,内含少量气体,与横膈关系密切。下述疾病中可能性最大的是
A.酸败B.破裂C.分层D.转相E.絮凝乳滴聚集成团但保持乳滴的完整分散体而不呈现合并现象
某投保人缴净保费P=1800元,附加费比例k=10%,则该投保人缴纳的营业保费为( )元。
某企业取得3年期银行存款1000万元,年利率8%,半年付息一次,到期一次还本,筹资费用率为l%,企业所得税率为25%。该企业的银行借款资本成本为()。
德国古典哲学是马克思主义哲学的直接理论来源。()
阅读《一个小官吏之死》这篇小说的片断,完成下列题。一个极好的傍晚,一个同样极好的名叫伊万.德米特里奇.切尔维亚科夫的庶务官坐在剧院大厅第二排的围椅上,架上望远镜观看《哥纳维勒的钟》。他凝神注目,飘然欲仙。突然……在小说里经常遇到“突然”这两个字。
王珏、柳枚、江倩三人分别是三个孩子的母亲,她们带着自己的孩子一同去郊游。王珏对自己的孩子说:“真有趣,你们这三个孩子,也是一个姓王,一个姓柳,一个姓江,但是你们都不和自己的母亲同姓。”另一个姓江的孩子说:“一点都没错。”根据上述条件,请判断以下哪项为真?
在美化演示文稿版面时,下列叙述不正确的是______。
在窗体上画一个名称为Command1的命令按钮和一个名称为Text1的文本框,并编写如下事件过程:PrivateSubCommand1_Click()DimiAsInteger,aAsInteger,jAsInteger
Forthispart,youareallowed30minutestowriteashortessayonthetopicBroadenOurKnowledge.Youshouldwriteatleast1
最新回复
(
0
)