首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(89年)证明方程在区间(0,+∞)内有且仅有两个不同实根.
(89年)证明方程在区间(0,+∞)内有且仅有两个不同实根.
admin
2021-01-19
92
问题
(89年)证明方程
在区间(0,+∞)内有且仅有两个不同实根.
选项
答案
[*] 原方程转化为[*] 则 F’(x)=[*]令F’(x)=0得x=e 当0<x<e时,F’(x)<0,F(x)严格单调减少; 当e<x<+∞时,F’(x)>0,F(x)严格单调增加,因此,F(x)在区间(0,e),和(e,+∞)内分别至多有一个零点. [*] 由闭区间上连续函数的零点定理可知,F(x)在(e
-3
,e)和(e,e
4
)内分别至少有一个零点,综上所述,方程[*]在(0,+∞)内有且仅有两个不同的实根.
解析
转载请注明原文地址:https://kaotiyun.com/show/nf84777K
0
考研数学二
相关试题推荐
微分方程χy′=+y(χ>0)的通解为_______.
设A是m×n矩阵,且方程组Ax=b有解,则
设区域D={(x,y)|≤1},其中常数a>b>0.D1是D在第一象限的部分,f(x,y)在D上连续,等式f(x,y)dσ=4f(x,y)dσ成立的一个充分条件是()
曲线上对应于的点处的法线斜率为______。[img][/img]
设exsin2x为某n阶常系数线性齐次微分方程的一个解,则该方程的阶数n至少是__________,该方程为__________.
已知二次型f(χ1,χ2,χ3)=χ12-2χ22+bχ32-4χ1χ2+4χ1χ3+2aχ2χ3(a>0)经正交变换化成了标准形f=2y12+2y22-7y32,求a=_______、b=_______的值和正交矩阵P=_______.
曲线y=的斜渐近线为_______.
若二阶常系数齐次线性微分方程y’’+by’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y’’+ay’+by=x满足条件y(0)=2,y’(0)=0的特解为y=_________。
(1997年试题,三(2))设y=y(x)由所确定,求
(1996年)设f(χ),g(χ)在区间[a,b]上连续,且g(χ)<f(χ)<m,(m为常数),由曲线y=g(χ),y=f(χ),χ=a及χ=b所围平面图形绕直线y=m旋转而成的旋转体体积为【】
随机试题
深冷装置提高轻烃收率的根本方法是提高膨胀机的制冷量。
一个完整的认识过程是()
隐性感染
下列各项,属于医患关系基本内容的是
国家对建设项目竣工环境保护验收实行()。
无词歌
()是全部教育活动的主题和灵魂,是教育的最高理想。
(2008年真题)下列选项中,属于狭义的执法活动范畴的是
当前和今后一个时期国际局势发展的基本态势是
NarratorListentopartofaconversationbetweentostudents.Nowgetreadytoanswerthequestions.Youmayuseyournotesto
最新回复
(
0
)