首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2的秩为2. (1)求a. (2)求作正交变换X=QY,把f(x1,x2,x3)化为标准形. (3)求方程f(x1,x2,x3)=0的解.
已知二次型f(x1,x2,x3)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2的秩为2. (1)求a. (2)求作正交变换X=QY,把f(x1,x2,x3)化为标准形. (3)求方程f(x1,x2,x3)=0的解.
admin
2019-06-28
88
问题
已知二次型f(x
1
,x
2
,x
3
)=(1-a)x
1
2
+(1-a)x
2
2
+2x
3
2
+2(1+a)x
1
x
2
的秩为2.
(1)求a.
(2)求作正交变换X=QY,把f(x
1
,x
2
,x
3
)化为标准形.
(3)求方程f(x
1
,x
2
,x
3
)=0的解.
选项
答案
(1)此二次型的矩阵为 [*] 则r(A)=2,|A|=0.求得|A|=-8a,得a=0. [*] (2) [*] 得A的特征值为2,2,0. 对特征值2求两个正交的单位特征向量: [*] 得(A-2E)X=0的同解方程组x
1
-x
2
=0,求出基础解系η
1
=(0,0,1)
T
,η
2
=(1,1,0)
T
.它们正交,单位化:α
1
=η
1
,α
2
=[*]. 方程x
1
-x
2
=0的系数向量(1,-1,0)
T
和η
1
,η
2
都正交,是属于特征值0的一个特征向量,单位化得 [*] 作正交矩阵Q=(α
1
,α
2
,α
3
),则 [*] 作正交变换X=QY,则f化为Y的二次型f=2y
1
2
+2y
2
2
. (3)f(X)=x
1
2
+x
2
2
+2x
3
2
+2x
1
x
2
=(x
1
+x
2
)
2
+2x
3
2
. 于是f(x
1
,x
2
,x
3
)=0<=>[*] 求得通解为:[*],c任意.
解析
转载请注明原文地址:https://kaotiyun.com/show/niV4777K
0
考研数学二
相关试题推荐
设f(x,y)连续,且f(x,y)=xy+f(μ,ν)dμdν,其中D是由y=0,y=x2,x=1所围区域,则f(x,y)等于()
设f(μ,ν)具有连续偏导数,且满足fμ’(μ,ν)+fν’(μ,ν)=μν。求y(x)=e-2xf(x,x)所满足的一阶微分方程,并求其通解。
设f(x)在(一∞,+∞)内有定义,且对于任意x与y均有f(x+y)=f(x)ey+f(y)ex,又设f’(0)存在且等于a(a≠0),试证明对任意的x∈(一∞,+∞),f’(x)都存在,并求f(x)。
设g(x)=其中f(x)在x=0处二阶可导,且f(0)=f’(0)=1。a、b为何值时,g(x)在x=0处连续。
设f(x)是区间[0,+∞)上具有连续导数的单调增加函数,且f(0)=1。对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周得一旋转体。若该旋转体的侧面积在数值上等于其体积的2倍,求函数f(x)的表达式。
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cosxdx=0。试证明在(0,π)内至少存在两个不同的点ξ1,ξ2,使(ξ1)=f(ξ2)=0。
设m,n均是正整数,则反常积分∫01dx的收敛性()
设m,n均是正整数,则反常积分的收敛性()
设f(x)在[a,b]连续,且∈[a,b],总∈[a,b],使得|f(y)|≤|f(x)|.试证:∈[a,b],使得f(ξ)=0.
(00年)设函数f(x)在[0,π]上连续,且∫0πf(x)dx=0,∫0πf(x)cosxdx=0.试证明:在(0.π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
随机试题
利用资源管理器为D盘的某个文件夹在桌面上创建快捷方式,可以用鼠标左键直接拖动该文件夹到桌面创建。()
患儿,诊断多发性抽动症。症见肌肉抽动,喉中痰鸣,怪声不断,偶有骂人,烦躁口渴,舌质红,苔黄腻,脉滑数。应首选
女,40岁。10年前因胆结石行胆囊切除术,术后病情痊愈。2年前单位倒闭,患者被安排到另一单位看大门,觉得看大门很没面子,但为生活着想又不得不去上班。1年前患者出现胆羹区皮肤触摸疼痛、胃胀不适伴阵发性心悸、胸闷、失眠、心情不好。患者四处求医,反复做过腹部B超
卵巢内侧与宫角之间的韧带称为
位于A省某市区的一家建筑企业为增值税一般纳税人,在B省某市区提供写字楼和桥梁建造业务,2019年3月具体经营业务如下:(1)写字楼项目按照工程进度及合同约定。本月取得含税收入300万元,并开具了增值税专用发票。该建筑企业将部分业务进行了分包,本月支付分包
不同的时代有不同的流行语,不同的流行语又反过来影响它的时代。有些时候,流行语可以破除旧制度造成的思维定式,从而更高效地推进制度改革。比如,从“一颗红心两手准备”到“穿草鞋还是穿皮鞋”的流行语变化,就是从一味强调服从,变成把选择权交还给个人。流行语的表述往往
分析下述论证在概念、论证方法、论据及结论等方面的有效性。600字左右。“政府应该提高邮资的价格,以改变邮政服务恶化的现象。毫无疑问,这种解决方法是有效的,因为收入会随着邮资价格的提高而增加,同时邮件数量会相应地减少。这样可消除现有邮政体制的束缚
AinfectedbodyfluidsBagainsttheoutbreakseverityCthemodeoftransmissionDtheinitialdaysofbeinginfectedEthreec
I’dbeenlivingwithmywifeforeightyearsandonenight"mom"says,"Iguessyouguysarenevergonnagetmarried.Imean,yo
A、Theyextendtheirwaterpipes.B、Theygiveoutfaintcries.C、Theymakenoisestodriveinsectsaway.D、Theybecomeaselastic
最新回复
(
0
)