首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2的秩为2. (1)求a. (2)求作正交变换X=QY,把f(x1,x2,x3)化为标准形. (3)求方程f(x1,x2,x3)=0的解.
已知二次型f(x1,x2,x3)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2的秩为2. (1)求a. (2)求作正交变换X=QY,把f(x1,x2,x3)化为标准形. (3)求方程f(x1,x2,x3)=0的解.
admin
2019-06-28
61
问题
已知二次型f(x
1
,x
2
,x
3
)=(1-a)x
1
2
+(1-a)x
2
2
+2x
3
2
+2(1+a)x
1
x
2
的秩为2.
(1)求a.
(2)求作正交变换X=QY,把f(x
1
,x
2
,x
3
)化为标准形.
(3)求方程f(x
1
,x
2
,x
3
)=0的解.
选项
答案
(1)此二次型的矩阵为 [*] 则r(A)=2,|A|=0.求得|A|=-8a,得a=0. [*] (2) [*] 得A的特征值为2,2,0. 对特征值2求两个正交的单位特征向量: [*] 得(A-2E)X=0的同解方程组x
1
-x
2
=0,求出基础解系η
1
=(0,0,1)
T
,η
2
=(1,1,0)
T
.它们正交,单位化:α
1
=η
1
,α
2
=[*]. 方程x
1
-x
2
=0的系数向量(1,-1,0)
T
和η
1
,η
2
都正交,是属于特征值0的一个特征向量,单位化得 [*] 作正交矩阵Q=(α
1
,α
2
,α
3
),则 [*] 作正交变换X=QY,则f化为Y的二次型f=2y
1
2
+2y
2
2
. (3)f(X)=x
1
2
+x
2
2
+2x
3
2
+2x
1
x
2
=(x
1
+x
2
)
2
+2x
3
2
. 于是f(x
1
,x
2
,x
3
)=0<=>[*] 求得通解为:[*],c任意.
解析
转载请注明原文地址:https://kaotiyun.com/show/niV4777K
0
考研数学二
相关试题推荐
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明:存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1。
一容器的内侧是由图中(如图1—3—6)曲线绕y轴旋转一周而成的曲面,该曲线由x2+y2=2y(y≥)与x2+y2=1(y≤)连接而成。求容器的容积;
已知f(2)=,f’(2)=0及∫02f(x)dx=1,求∫01x2f’’(2x)dx。
设函数f(x)在(一∞,+∞)内单调有界,{xn}为数列,下列命题正确的是()
设A,B均为n阶对称矩阵,则不正确的是()
已知函数f(x)=。若x→0时,f(x)一a与xk是同阶无穷小,求常数k的值。
过点(0,1)作曲线L:y=lnx的切线,切点为A,又L与x轴交于B点,区域D由L与直线AB围成。求区域D的面积及D绕x轴旋转一周所得旋转体的体积。
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记证明二次型f对应的矩阵为2ααT+ββT;
设方程组与方程(2)x1+2x2+x3=a一1有公共解,求a的值及所有公共解。
设an=,证明:{an}收敛,并求.
随机试题
经血传播的RNA肝炎病毒是
A/延长动作电位时程药B/具有交感神经抑制作用的抗高血压药C/钙拮抗药D/主要用于治疗心力衰竭的药E/特异性抑制磷酸二酯酶的药氨力农是
颌下区的下界为
伪造、变造、买卖或者盗窃、抢夺、毁灭国家机关的公文、证件、印章的以暴力、威胁方法阻碍全国人民代表大会和地方各级人民代表大会代表依法执行代表职务的
专家认为最符合现代经销观念的组织是()。
复印机会产生下列哪种有害物质?()
对于设置了账簿的企业,税务机关就应当采用查账征收的方式征收税款。()
下列各项中,企业应确认为其他货币资金的有()。
《黄帝内经》深受诸子百家学术思想的影响,其中有这么一段话:“心者,君主之官也,神明出焉。肺者,相傅之官,治节出焉。肝者,将军之官,谋虑出焉。胆者,中正之官,决断出焉。膻中者,臣使之官,喜乐出焉。”这段论述受到下列哪一学派思想的影响?()
下面不属于软件设计阶段任务的是
最新回复
(
0
)