设f(x)在区间[a,b]上满足a≤f(x)≤b,且有|f’(x)|≤q<1,令un=f(un-1)(n=1,2,…),u0∈[a,b],证明:级数(un+1-un)绝对收敛.

admin2019-11-25  48

问题 设f(x)在区间[a,b]上满足a≤f(x)≤b,且有|f’(x)|≤q<1,令un=f(un-1)(n=1,2,…),u0∈[a,b],证明:级数(un+1-un)绝对收敛.

选项

答案因为|un+1-un|=|f(un)-f(un-1)|=|f’(ξ1)|un-un-1| ≤q|un-un-1|≤q2|un-1-un-2|≤…≤qn|u1-u0| 且[*]qn收敛,所以[*]|un+1-un|收敛,于是[*](un+1-un)绝对收敛.

解析
转载请注明原文地址:https://kaotiyun.com/show/nnD4777K
0

相关试题推荐
最新回复(0)