首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n阶矩阵A满足(A一aE)(A一bE)=0,其中a≠b,证明A可对角化.
已知n阶矩阵A满足(A一aE)(A一bE)=0,其中a≠b,证明A可对角化.
admin
2017-08-07
107
问题
已知n阶矩阵A满足(A一aE)(A一bE)=0,其中a≠b,证明A可对角化.
选项
答案
首先证明A的特征值只能是a或b. 设λ是A的特征值,则(λ一a)(λ一b)=0,即λ=a或λ=b. 如果b不是A的特征值,则A一bE可逆,于是由(A一aE)(A一bE)=0推出A—aE=0,即A=aE是对角矩阵. 如果b是A的特征值,则|A一bE|=0.设η
1
,η
2
,…,η
t
是齐次方程组(A一bE)X=0的一个基础解系(这里t=n—r(A一bE)),它们都是属于b的特征向量.取A一bE的列向量组的一个最大无关组γ
1
,γ
2
,…,γ
k
,这里k=r(A一bE).则γ
1
,γ
2
,…,γ
k
是属于a的一组特征向量.则有A的k+t=n个线性无关的特征向量组γ
1
,γ
2
,…,γ
k
;η
1
,η
2
,…,η
t
,因此A可对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/nor4777K
0
考研数学一
相关试题推荐
(2000年试题,一)设两个相互独立的事件A和B都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相等,则P(A)=_____________.
(2007年试题,二)在区间(0,1)中随机地取两个数,则这两个数之差的绝对值小于的概率为_____________.
(2009年试题,21)设二次型f(x1,x2,x3)=a22+a22+(a一1)x32+2x1x3—2x2x3.若二次型f的规范形为y12+y22,求a的值.
(2006年试题,21)设3阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=O的两个解.求A的特征值与特征向量;
(2003年试题,十二)设总体X的概率密度为其中θ>0是未知参数,从总体x中抽取简单随机样本X1,X2,…,Xn,记θ=min(X1,X2,…,Xn)求统计量θ的分布函数Fθ(x);
(2012年试题,三)设随机变量X与Y相互独立且分别服从正态分布N(μ,σ2)与N(μ,2σ2),其中σ是未知参数且σ>0.设Z=X—Y证明[*]为σ2的无偏估计量.
(1998年试题,十四)从正态总体N(3.4,62)中抽取容量为n的样本,如果要求其样本均值位于区间(1.4,5.4)内的概率不小于0.95,问样本容量n至少应取多大?附表:标准正态分布数值表:
设一设备在时间长度为t的时间内发生故障的次数N(t)~P(λt).
设每次试验成功的概率为,X表示首次成功需要试验的次数,则X取偶数的概率为____________.
随机试题
中华人民共和国的成立标志着中国进入()
在Windows资源管理器的左窗格中的目录图标上,有“一”号的表示()。
女性,25岁,未婚,半年来乏力,面色苍白,1周来加重,既往有十二指肠溃疡病5年。化验血Hb75g/L,RBC3.5×1012/L,WBC8.5×109/L,PIT325×109/L。诊断为缺铁性贫血。(2007年)该患者最不适宜的处理是
按照国务院有关规定批准开工报告的建筑工程,因故不能按期开工或者中止施工的,应当及时向批准机关报告情况。其中因故不能按期开工超过()的,应当重新办理开工报告的批准手续。
(2009年)在空气中用波长为λ的单色光进行双缝干涉实验,观测到相邻明条纹间的间距为1.33mm,当把实验装置放在水中(水的折射率为1.33)时,则相邻明条纹的间距变为()mm。
城市热力管道在实施焊接前,应根据焊接工艺试验结果编写焊接工艺方案,包括以下主要内容:母材性能和焊接材料;焊接方法;焊接电流的选择;()。
下列关于夏普比率的说法中,不正确的是()。
证券公司、证券投资咨询机构及其人员提供证券投资顾问服务,应当忠实()利益。
领导者与众不同的特质有()。
ForthepeoplewhohavenevertraveledacrosstheAtlanticthevoyageisafantasy.Butforthepeoplewhocrossitfrequentlyo
最新回复
(
0
)