首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设平面区域D是由坐标为(0,0),(0,1),(1,0),(1,1)的四个点围成的正方形.今向D内随机地投入10个点,求这10个点中至少有2个点落在曲线y=x2与直线y=x所围成的区域D1内的概率.
设平面区域D是由坐标为(0,0),(0,1),(1,0),(1,1)的四个点围成的正方形.今向D内随机地投入10个点,求这10个点中至少有2个点落在曲线y=x2与直线y=x所围成的区域D1内的概率.
admin
2017-08-07
62
问题
设平面区域D是由坐标为(0,0),(0,1),(1,0),(1,1)的四个点围成的正方形.今向D内随机地投入10个点,求这10个点中至少有2个点落在曲线y=x
2
与直线y=x所围成的区域D
1
内的概率.
选项
答案
设事件A表示“任投的一点落在区域D
1
内”,则P(A)是一个几何型概率的计算问题.样本空间Ω={(x,y)|0≤x≤1,0≤y≤1},有利于事件A的样本点集合为D
1
={(x,y)|x
2
≤y≤x}(如图1.3).依几何型概率公式 [*] 设事件B
k
表示“10个点中落入区域D
1
的点的个数为k”,k=0,…,10,这是一个十重伯努利概型问题,应用伯努利公式 P(B
2
∪B
3
∪…∪B
10
)=1一P(B
0
)一P(B
1
) =1一(1一p)
10
—C
10
1
p(1一p)
9
[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/nsr4777K
0
考研数学一
相关试题推荐
已知平面区域D={(x,y)|0≤x≤π,0≤y≤π},L为D的正向边界,试证:
已知4阶方阵A=(a1,a2,a3,a4),a1,a2,a3,a4均为4维列向量,其a2,a3,a4线性无关,a1=2a1-a3,如果β=a1+a2+a3+a4,求线性方程组Ax=β的通解.
假设随机变量u在区间[-2,2]上服从均匀分布,随机变量试求:(Ⅰ)X和Y的联合概率分布;(Ⅱ)D(X+Y).
设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:(Ⅰ)存在η∈(a,b),使得f(η)=g(η);(Ⅱ)存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ
(1998年试题,九)设y=f(x)是区间[0,1]上的任一非负连续函数.试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的曲边梯形面积;
(2005年试题,17)如图1—3—2所示,曲线c的方程为y=f(x),A(3,2)是它的一个拐点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分
(2003年试题,十二)设总体X的概率密度为其中θ>0是未知参数,从总体x中抽取简单随机样本X1,X2,…,Xn,记θ=min(X1,X2,…,Xn)求统计量θ的分布函数Fθ(x);
(1998年试题,十一)设A是n阶矩阵,若存在正整数k,使线性方程组AkX=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα,…,Ak-1α是线性无关的.
将一枚均匀的骰子投掷三次,记事件A表示“第一次出现偶数点”,事件B表示“第x次出现奇数点”,事件C表示“偶数点最多出现一次”,则
投掷一枚硬币三次,观察三次投掷出现正反面情况,比如一种可能结果为HTT(表示第一次出现的是正面,第二次和第三次出现的都是反面).写出所有可能结果构成的样本空间Ω;
随机试题
经典的肾上腺素传递方式属于
下列哪项不属于中焦病证的临床表现()(2001年第27题)
能与GDP/GTP结合的蛋白质是
正常人体温高热
简述债权人撤销权的成立要件。[简答题,中南大学2019年研;首师大2010年研]
()可以引用和编辑文本、图像、声音、动画和视频等多种媒体素材。‘
微分方程y"一2y’=x2+e2x+1的待定系数法确定的特解形式(不必求出系数)是__________.
Ifyou’vegotanearforlanguages,askillofcodingorasteadyhandanddon’tfaintatthesightofbloodthenyourcareerlo
设待排序的记录为(28,19,11,17,22),经过下列过程将这些记录排序:28,19,11,17,2219,11,17,22,2811,17,19,22,28所用的排序方法是(61)。
Usingtheinformationinthepassage,completethetablebelow.Writeyouranswersinboxes8-10onyouranswersheet.
最新回复
(
0
)