首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)=在(一∞,+∞)内连续,且=0,则常数a,b满足( )
设函数f(x)=在(一∞,+∞)内连续,且=0,则常数a,b满足( )
admin
2019-01-19
72
问题
设函数f(x)=
在(一∞,+∞)内连续,且
=0,则常数a,b满足( )
选项
A、a<0,b<0。
B、a>0,b>0。
C、a≤0,b>0。
D、a≥0,b<0。
答案
D
解析
因f(x)连续,故a+e
bx
≠0,因此只要a≥0即可。再由
=0.
可知x→∞时,a+e
bx
必为无穷大(否则极限必不存在),此时需b<0,故选D。
转载请注明原文地址:https://kaotiyun.com/show/o1P4777K
0
考研数学三
相关试题推荐
设X1,X2,…,Xn为来自指数总体E(λ)的简单随机样本,X和S2分别是样本均值和样本方差.若,则k=
设(X,Y)的概率分布为已知Cov(X,Y)=一,其中F(x,y)表示X与Y的联合分布函数.求常数a,b,c的值.
设A是m×n矩阵,对矩阵A作初等行变换得到矩阵B,证明:矩阵A的列向量与矩阵B相应的列向量有相同的线性相关性.
已知向量组(I)α1=(1,3,0,5)T,α2=(1,2,1,4)T,α3=(1,1,2,3)T与向量组(Ⅱ)β1=(1,一3,6,一1)T,β2=(a,0,6,2)T等价,求a,b的值.
求解微分方程—y=x2+y2.
已知非齐次线性方程组有3个线性无关的解.(1)证明:方程组的系数矩阵A的秩r(A)=2.(2)求a,b的值及方程组的通解.
设f(x)=xTAx为一n元二次型,且有Rn中的向量x1和x2,使得f(x1)>0,f(x2)<0.证明:存在Rn中的向量x0≠0,使f(x0)=0.
以下4个命题,正确的个数为()①设f(x)是(-∞,+∞)上连续的奇函数,则∫-∞+∞f(x)dx出必收敛,且∫-∞+∞f(x)dx=0;②设f(x)在(-∞,+∞)上连续,且存在,则∫-∞+∞f(x)dx必收敛,且③若∫-∞+∞f
当x→0时,下列无穷小量中阶数最高的是().
设α1,α2,α3,α4都是n维向量.判断下列命题是否成立.①如果α1,α2,α3线性无关,α4不能用α1,α2,α3线性表示,则α1,α2,α3,α4线性无关.②如果α1,α2线性无关,α3,α4都不能用α1,α2线性表示,则α1,α2,α3,α4线
随机试题
净现值等于()
超声在人体中传播遇到空气时,正确的描述是
患者,男,40岁。体检发现尿内出现多量管型。表示
在软弱地基上修建的土质路堤,下列工程措施中可加强软土地基的稳定性的有()。
将教育功能分为个体功能和社会功能是依据其()。
人民警察内务建设的原则是高效务实、加强监督、着眼基层。()
白居易在登上庐山时写下:“人间四月芳菲尽,山寺桃花始盛开。”产生诗中景象的原因是:
1984年以前,只有阿司匹林和艾斯塔米诺芬占据着有利可图的非处方止痛药市场。然而到了1984年,易布洛芬预计会占有非处方止痛药销售量的15%的份额。商业专家据此预测,在1984年,阿司匹林和艾斯塔米诺芬的总销售量相应下降了15%。上文最后一句话中提到的预测
如下图所示,主机A发送数据包给B,在数据包经过路由器转发的过程中,下列封装在数据包3中的目的IP地址和目的MAC地址,正确的是()。
Accompaniedbycheerfulmusic,webegantodance.
最新回复
(
0
)