首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在x=x0某邻域有二阶连续导数,曲线y=f(x)和y=g(x)有相同的凹凸性.求证: 曲线y=f(x)和y=g(x)在点(x0,y0)处相交、相切且有相同曲率的充要条件是:f(x)-g(x)=o((x-x0)2)(x→x0).
设f(x),g(x)在x=x0某邻域有二阶连续导数,曲线y=f(x)和y=g(x)有相同的凹凸性.求证: 曲线y=f(x)和y=g(x)在点(x0,y0)处相交、相切且有相同曲率的充要条件是:f(x)-g(x)=o((x-x0)2)(x→x0).
admin
2019-02-26
35
问题
设f(x),g(x)在x=x
0
某邻域有二阶连续导数,曲线y=f(x)和y=g(x)有相同的凹凸性.求证:
曲线y=f(x)和y=g(x)在点(x
0
,y
0
)处相交、相切且有相同曲率的充要条件是:f(x)-g(x)=o((x-x
0
)2)(x→x
0
).
选项
答案
相交与相切即f(x
0
)=g(x
0
),f′(x
0
)=g′(x
0
).若又有曲率相同,即 [*],亦即|f″(x
0
)|=|g″(x
0
)|. 由二阶导数的连续性及相同的凹凸性得,或f″(x
0
)=g″(x
0
)=0或f″(x
0
)与g″(x
0
)同号,于是f″(x
0
)=g″(x
0
).因此,在所设条件下,曲线y=f(x),y=g(x)在(x
0
,y
0
)处相交、相切且有相同曲率[*]f(x
0
)一g(x
0
)=0,f′(x
0
)一g′(x
0
)=0,f″(x
0
)一g″(x
0
)=0. [*]f(x)一g(x)=f(x
0
)一g(x
0
)+[f(x)一g(x)]′|
x=x
0
(x—x
0
)+[*][f(x)一g(x)]″|
x=x
0
(x一x
0
)
2
+o(x一x
0
)
2
=o((x一x
0
)
2
) (x一x
0
). 即当x→x
0
时f(x)一g(x)是比(x一x
0
)
2
高阶的无穷小.
解析
转载请注明原文地址:https://kaotiyun.com/show/oF04777K
0
考研数学一
相关试题推荐
设随机变量则(X,Y)的联合分布律为________.
设总体X的密度函数为X1,X2,…,Xn为来自总体X的简单随机样本,令(I)求Y的分布函数;(Ⅱ)讨论作为参数θ的估计量是否具有无偏性.
(I)设A,B为n阶可相似对角化矩阵,且有相同特征值,证明:矩阵A,B相似.(Ⅱ)设求可逆矩阵P,使得P-1AP=B.
积分
设二维随机变量(X1,X2)的密度函数为f1(x1,x2),则随机变量(Y1,Y2)(其中Y1=2X1,Y2=X2)的概率密度f2(y1,y2)等于()
设n元实二次型f(x1,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xx-1+an-1xn)2+(xn+anx1)2,其中a1,…,an均为实数。试问:当a1,…,an满足何种条件时,二次型f是正定的。
(2009年)计算曲面积分其中∑是曲面2x2+2y2+z2=4的外侧。
(2000年)计算曲线积分其中L是以点(1,0)为中心,R为半径的圆周(R>1),取逆时针方向。
设A为三阶实对称矩阵,如果二次曲面方程(x,y,z)A=1在正交变换下的标准方程的图形如图所示,则A的正特征值个数为()
随机试题
建设社会主义文化强国的关键是()
能直接识别、结合TATA盒的基本转录因子是
总结16世纪以前本草学知识的著作是
患者,男,36岁。刷牙时牙龈出血4年余,进食时碰触亦出血,含漱后可止住。检查:牙龈红肿,探诊深度在3mm,X线片未见牙槽骨嵴顶吸收。此患者最可能的诊断是
金匮温经汤用于治疗()
下列各项中,不属于预计利润表编制依据的是()。
有些人认为棒球中下手球的投掷方法没有危险。但1920年,由于投掷手卡尔的下手球击中卡查普曼,后者死于头部受伤,因此,下手球的投掷方法应被禁止。上述推理过程的错误在于()。
甜品店有四种甜点:双皮奶、布丁、蛋糕和冰淇淋。B比A贵,C最便宜,双皮奶比布丁贵,蛋糕最贵,冰淇淋比D贵。关于这四种甜点,下列说法正确的是:
简述逃税构成犯罪初犯的特别规定。
毛泽东思想经历了多个发展阶段才最终走向成熟。毛泽东思想的形成时期是()
最新回复
(
0
)