首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求二元函数z=f(x,y)=x2y(4-x-y)在由直线x+y=6,x轴和y轴所围成的闭区域D上的极值、最大值与最小值.
求二元函数z=f(x,y)=x2y(4-x-y)在由直线x+y=6,x轴和y轴所围成的闭区域D上的极值、最大值与最小值.
admin
2019-02-26
43
问题
求二元函数z=f(x,y)=x
2
y(4-x-y)在由直线x+y=6,x轴和y轴所围成的闭区域D上的极值、最大值与最小值.
选项
答案
由方程组 [*] 解得x=0(0≤y≤6)及点(4,0),(2,1). 而点(4,0)及线段x=0(0≤Y≤6)在D的边界上,只有点(2,1)在D内部,可能是极值点, f
xx
’’=8y-6xy-2y
2
,f
xy
’’=8x-3x
2
-4xy,f
yy
’’=-2x
2
, 在点(2,1)处, [*] B
2
-AC=-32<0,且A<0,因此点(2,1)是z=f(x,y)的极大值点,极大值f(2,1)=4. 在D的边界x=0(0≤Y≤6)及y=0(0≤x≤6)上,f(x,y)=0.在边界x+y=6上,y=6-x. 代入f(x,y)中得,z=2x
3
-12x
2
(0≤x≤6). 由z’=6x
2
-24x=0得x=0,x=4.在边界x+y=6上对应x=0,4,6处z的值分别为: z|
x=0
=(2x
3
-12x
2
)|
x=0
=0,z|
x=4
=(2x
3
-12x
2
)|
x=4
=-64,z|
x=6
=(2x
3
—12x
2
)|
x=6
=0. 因此知z=f(x,y)在边界上的最大值为0,最小值为f(4,2)=-64. 将边界上最大值和最小值与驻点(2,1)处的值比较得,z=f(x,y)在闭区域D上的最大值为f(2,1)=4,最小值为f(4,2)=-64.
解析
转载请注明原文地址:https://kaotiyun.com/show/oH04777K
0
考研数学一
相关试题推荐
设平面方程为Ax+Cz+D=0,其中A,C,D均不为零,则平面()
设A是n阶矩阵(n≥2),证明:(Ⅰ)当n=2时,(A*)*=A;(Ⅱ)当n≥3时,(A*)*=|A|n-1A。
A2-B3=(A+B)(A-B)的充分必要条件是________。
设线性方程组(Ⅰ)证明当a1,a2,a3,4两两不相等时,方程组无解;(Ⅱ)设a1=a3=k,a2=a4=-k(k≠0),并且β1=(-1,1,1)T和β2=(1,1,-1)T是两个解。求此方程组的通解。
(2006年)设f(x,y)为连续函数,则等于()
(2000年)微分方程xy"+3y′=0的通解为_____________。
(2000年)
对随机变量X,已知EekX存在(k>0常数),证明:P{X≥ε}≤.E(ekX),(其中ε>0).
求微分方程(y+)dx一xdy=0(x>0)的满足初始条件y(1)=0的解.
(1990年)求微分方程y"+4y’+4y=e-2x的通解(一般解).
随机试题
节后纤维
嘌呤核苷酸分解代谢的终产物是
虚劳病名,首见于
国务院银行业监督管理机构有权监管的是()
建设工程项目在施工总承包管理模式下,分包合同价对()是透明的。
正在服刑的罪犯如实供述司法机关还未掌握的本人其他罪行的,以自首论。()
某地房价过高,过高房价并非好事,这背后隐藏着一些不合理的东西。据此,有四个推论:(1)有些地方高房价是合理的;(2)不合理的东西引起高房价;(3)高房价引起不合理现象;(4)并非仅仅是某地房价高。以上推论,
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。
写出下列六个省市的一个字的简称正确的一组;①河北②河南③湖北④安徽⑤贵州⑥江西
据报道,某国科学家在一块60万年前来到地球的火星陨石上发现了有机生物的痕迹,因为该陨石由二氧化碳化合物构成,该化合物产生于甲烷,而甲烷可以是微生物受到高压和高温作用时产生的。由此可以推断火星上曾经有过生物,甚至可能有过像人一样的高级生物。以下条件除了哪项外
最新回复
(
0
)