首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求二元函数z=f(x,y)=x2y(4-x-y)在由直线x+y=6,x轴和y轴所围成的闭区域D上的极值、最大值与最小值.
求二元函数z=f(x,y)=x2y(4-x-y)在由直线x+y=6,x轴和y轴所围成的闭区域D上的极值、最大值与最小值.
admin
2019-02-26
47
问题
求二元函数z=f(x,y)=x
2
y(4-x-y)在由直线x+y=6,x轴和y轴所围成的闭区域D上的极值、最大值与最小值.
选项
答案
由方程组 [*] 解得x=0(0≤y≤6)及点(4,0),(2,1). 而点(4,0)及线段x=0(0≤Y≤6)在D的边界上,只有点(2,1)在D内部,可能是极值点, f
xx
’’=8y-6xy-2y
2
,f
xy
’’=8x-3x
2
-4xy,f
yy
’’=-2x
2
, 在点(2,1)处, [*] B
2
-AC=-32<0,且A<0,因此点(2,1)是z=f(x,y)的极大值点,极大值f(2,1)=4. 在D的边界x=0(0≤Y≤6)及y=0(0≤x≤6)上,f(x,y)=0.在边界x+y=6上,y=6-x. 代入f(x,y)中得,z=2x
3
-12x
2
(0≤x≤6). 由z’=6x
2
-24x=0得x=0,x=4.在边界x+y=6上对应x=0,4,6处z的值分别为: z|
x=0
=(2x
3
-12x
2
)|
x=0
=0,z|
x=4
=(2x
3
-12x
2
)|
x=4
=-64,z|
x=6
=(2x
3
—12x
2
)|
x=6
=0. 因此知z=f(x,y)在边界上的最大值为0,最小值为f(4,2)=-64. 将边界上最大值和最小值与驻点(2,1)处的值比较得,z=f(x,y)在闭区域D上的最大值为f(2,1)=4,最小值为f(4,2)=-64.
解析
转载请注明原文地址:https://kaotiyun.com/show/oH04777K
0
考研数学一
相关试题推荐
设矩阵A=,矩阵B满足AB+B+A+2E=O,则|B+E|=()
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解;则秩(A
微分方程xdy+2ydx=0满足初始条件y(2)=1的特解为()
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。(Ⅰ)求a的值;(Ⅱ)将β1,β2,β3由α1,α2,α3线性表示。
设A是3阶实对称矩阵,A的每行元素的和为5,则二次型f(x1,x2,x3)=xTAx在x0=(1,1,1)T的值f(1,1,1)=x0TAx0=_______。
(2013年)已知极限其中k,c为常数,且c≠0,则()
设二维随机变量(X,Y)在区域D={(x,y)|0<x<1,x2<y<}上服从均匀分布,令(Ⅰ)写出(X,Y)的概率密度;(Ⅱ)问U与X是否相互独立?并说明理由;(Ⅲ)求Z=U+X的分布函数F(z)。
设直线y=kx与曲线所围平面图形为D1,它们与直线x=1围成平面图形为D2.(1)求k,使得D1与D2分别绕x轴旋转一周成旋转体体积V1与V2之和最小,并求最小值;(2)求此时的D1+D2.
判定级数的敛散性,其中α和β为常数.
求下列极限.
随机试题
partialshipment
关于水分容易通透而对钠不容易通透的肾小管是
导致心肌炎最主要的病原体是
临床上最简便的用于确诊疟疾的实验室检查方法是
检验机构对自理报检单位实行备案登记制度,对代理报检单位实行注册登记制度。()
中央银行依法集中保管存款准备金,从职能上看,这体现了中央银行是()。
会计凭证的保留期满以后,企业可以自行进行处理。()
在风险控制的基本方法中,制定计划和采取措施降低损失的可能性或者是减少实际损失的风险控制方法是()。
黑龙江的“手把肉”是()的风味食品。
A、Wehavemadedoubledeffortstoincreasetheattendance.B、Weneedtofindanother80agentsforoursalesconference.C、This
最新回复
(
0
)