首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=y(x)是第一象限内一条向上凸的连续曲线,其上任意一点(x,y)处的曲率半径为R=y3,且此曲线上点(1,1)处的切线方程为y=1,求函数y(x).
设y=y(x)是第一象限内一条向上凸的连续曲线,其上任意一点(x,y)处的曲率半径为R=y3,且此曲线上点(1,1)处的切线方程为y=1,求函数y(x).
admin
2016-01-23
52
问题
设y=y(x)是第一象限内一条向上凸的连续曲线,其上任意一点(x,y)处的曲率半径为R=y
3
,且此曲线上点(1,1)处的切线方程为y=1,求函数y(x).
选项
答案
曲线y=y(x)上任意一点处的曲率半径为R=[*],故由题设条件有 [*],即y
3
y’’+1=0. 这是不显含x的可降阶的微分方程.令[*]=p,则 [*] 于是方程化为 [*] 两边积分,得[*] 因曲线y=y(x)上点(1,1)处切线方程为y=1,故y(1)=1,y’(1)=p(1)=0.代入上述 方程,可得C
1
=[*]从而有 [*] 于是有[*]=dx.两边积分,得 [*]=x+C
2
由
解析
本题主要考查曲率半径的概念,并由此构造一个可降阶的微分方程.建立出这个微分方程,解之即可.
注:对干求解可降阶的高阶微分方程的特解问题,要根据初始条件随时确定积分后出现的任意常数,这样一般会使计算得以简化.请读者参阅求解过程仔细体会.
转载请注明原文地址:https://kaotiyun.com/show/oRw4777K
0
考研数学一
相关试题推荐
设α1,α2,α3线性无关,β1可由α1,α2,α3线性表示,β2不可由α1,α2,α3线性表示,对任意的常数k有().
设f(x)在[a,b]上连续可导,证明:.
设函数f(x)满足xf’(x)-2f(x)=-x,且由曲线y=f(x),x=1及x轴(x≥0)所围成的平面图形为D,若D绕x轴旋转一周所得旋转体体积最小,求:曲线在原点处的切线与曲线及直线x=1所围成的平面图形的面积。
设,3阶矩阵B的秩为2,且r(AB)=1,则齐次方程组A*x=0的线性无关解的个数为()
已知线性方程组(Ⅰ)a,b为何值时,方程组有解?(Ⅱ)方程组有解时,求出方程组的导出组的一个基础解系;(Ⅲ)方程组有解时,求出方程组的全部解.
设P为椭球面S:x2+y2+z2-yz=1上的动点,若S在点P处的切平面与xOy面垂直,求点P的轨迹C,并计算曲面积分,其中∑为椭球面S位于曲线C上方的部分.
设函数f(u)可导,y=f(sinx)当自变量x在x=π/6处取得增量△x=,相应的函数增量△y,的线性主部为1,则f’(1/2)=().
已知函数f(x)在[0,3π/2]上连续,在(0,3π/2)内是函数的一个原函数,f(0)=0.(I)求f(x)在区间[0,3π/2]上的平均值;(Ⅱ)证明f(x)在区间(0,3π/2)内存在唯一零点.
[*]本题是两个不同分布的综合问题,所求的事件Vn为n次独立重复实验中X的观测值不大于0.1的次数,故Vn服从二项分布b(n,p),而这里p为X的观测值不大于0.1的概率,需要根据X服从的分布来计算.
随机试题
膳食纤维与结肠癌死亡率呈负相关。()
下述哪一项不是导致骨折延迟愈合的因素
债券的期限在1年以上、10年以下的为()债券。
水库等工程蓄引水前,必须进行蓄引水(阶段)验收。验收前,应按照水利部有关规定对工程进行()。通过后,才可以进行验收。
下面为某教师在教学中使用的图示:问题:根据图示,概述英国君主立宪制度的特点。
培养()是形成道德品质的关键所在。
《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》首次设立安全发展专篇,对强化国家经济安全保障,实施粮食安全、能源资源安全和金融安全等战略做出了具体安排。下列有关实施金融安全战略的说法,错误的是()。
某字长为8位的计算机中,带符号整数采用补码表示,x=—68,y=—80,x和y分别存放在寄存器A和B中,请回答下列问题(最终要求用十六进制表示二进制序列)。若x和y相加后的结果存放在寄存器C中,则寄存器C中的内容是什么?运算结果是否正确?此时,溢出标志
【2011浙江财经大学单选题第3题】商业银行与其他金融机构的区别之一在于其能接受()。
新民主主义社会是
最新回复
(
0
)