首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,A11≠0,证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设A为n阶矩阵,A11≠0,证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
admin
2021-11-25
49
问题
设A为n阶矩阵,A
11
≠0,证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A
*
b=0.
选项
答案
设非齐次线性方程组AX=b有无穷多个解,则r(A)<n,从而|A|=0 于是A
*
b=A
*
AX=|A|X=0 反之,设A
*
b=0,因为b≠0,所以方程组A
*
X=0有非零解,从而r(A
*
)<n,又A
11
≠0,所以r(A
*
)=1,且r(A)=n-1 因为r(A
*
)=1,所以方程组A
*
X=0的基础解系含有n-1个线性无关的解向量,而A
*
A=O,所以A的列向量组α
1
,α
2
,...,α
n
为方程组A
*
X=0的一组解向量。 由A
11
≠0,得α
2
,...,α
n
线性无关,所以α
2
,...,α
n
是方程组A
*
X=0的基础解系。 因为A
*
b=0,所以b可由α
2
,...,α
n
线性表示,也可由α
1
,α
2
,...,α
n
线性表示,故r(A)=[*]=n-1<n,即方程组AX=b有无穷多个解。
解析
转载请注明原文地址:https://kaotiyun.com/show/Wpy4777K
0
考研数学二
相关试题推荐
函数y=lnx在区间[1,n]上满足拉格朗日中值定理的ξ记为ξn,则=_______.
证明:
设A为三阶实对称矩阵,α1=(m,-m,1)T是方程组AX=0的解,α2=(m,1,1-m)T是方程组(A+E)X=0的解,则m=_________.
已知三阶矩阵A的三个特征值为1,2,3,则(A-1)*的特征值为_________.
设A,B为n阶矩阵,下列命题成立的是().
已知二次型f(x1,x2,x3)=2x12+3x22+3x32+2ax2x3(a>0),若二次型f的标准形为f=y12+2y22+5y32,求a的值及所使用的正交变换矩阵。
设A是m×s矩阵,B是s×n矩阵,则线性方程组ABx=0和Bx=0是同解方程组的一个充分条件是()
设α1,α2,α3,α4是四维非零列向量组,A=(α1,α2,α3,α4),A*为A的伴随矩阵。已知方程组Ax=0的基础解系为k(1,0,2,0)T,则A*x=0的基础解系为()
设n阶矩阵A的伴随矩阵A*≠O,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Aχ=b的互不相等的解,则对应的齐次线性方程组Aχ=0的基础解系【】
设非齐次线性方程组Aχ=b有两个不同解,β1和β2其导出组的一个基础解系为α1,α2,c1,c2为任意常数,则方程组Aχ=b的通解为【】
随机试题
垄断资本是怎样利用国家来为其经济利益服务的?
A.妊娠满28周后,胎儿及附属物全部从母体排出B.孕满28周至不满37周娩出者C.孕满42周及以后分娩者D.孕满37周而不满42周分娩者E.孕不满28周,胎儿不足1000g而娩出者
划分委托监理合同包的工作范围时,通常考虑的因素包括( )。
课堂教学、科学研究与社会实践是高校培养合格人才的三个基本途径。()
道德修养与社会实践密切相连。一个人只有在日常生活中,即在与别人、与集体发生的各种关系中,才较清楚地认识到自己的行为哪些是道德的,哪些是不道德的。同样,克服不道德的思想和行为,也只有在社会实践中才能实现。这段文字意在说明()。
根据以下资料,回答下列问题。2017年我国成年国民图书阅读率为59.1%,比上年增加0.3个百分点;报纸阅读率为37.6%,比上年降低2.1个百分点;期刊阅读率为25.3%,比上年增加1个百分点。2017年我国成年
婴儿主要的思维形式是
张教授:莎士比亚名下的戏剧和诗歌,其实不是他写的,而是伊丽莎白一世写的。莎士比亚是个没有受过多少教育的乡下人,而伊丽莎白一世则完全具有完成这些天才作品的知识和教养。李研究员:你的断定是不能成立的。因为如果伊丽莎白写了像《哈姆雷特》这样的名剧的话,她早
READINGPASSAGE1Youshouldspendabout20minutesonQuestions1-13,whicharebasedonReadingPassage1below. Cleaner
A、Wecanonlyovercomedifficultieswithfriends’help.B、Ourbreathingwillbedeepandregular.C、Ourstresslevelswillrise.
最新回复
(
0
)