首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设X为随机变量,若矩阵的特征值全为实数的概率为0.5,则( )。
设X为随机变量,若矩阵的特征值全为实数的概率为0.5,则( )。
admin
2015-11-16
58
问题
设X为随机变量,若矩阵
的特征值全为实数的概率为0.5,则( )。
选项
A、X服从区间[0,2]上的均匀分布
B、X服从二项分布B(2,0.5)
C、X服从参数为1的指数分布
D、X服从正态分布
答案
A
解析
[解题思路] 先计算A的特征多项式,再由特征值全为实数应满足的概率条件进而确定X的分布。
解 因|λE-A |=
=(λ-2)(λ
2
+2λ+X),故A的特征值全为实数的条件为b
2
-4ac=4-4X≥0,由题设有P(4-4X≥0)=0.5,即
P(X≤1)=P(0≤X≤1)=(1-0)/(2-0)=0.5,
因而X服从区间[0,2]上的均匀分布,仅(A)入选。
转载请注明原文地址:https://kaotiyun.com/show/oTw4777K
0
考研数学一
相关试题推荐
设A是3×3矩阵,α1,α2,α3是三维列向量,且线性无关,已知Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.(1)证明:Aα1,Aα2,Aα3线性无关;(2)求|A|.
设向量组a1,a2,…,am线性相关,且a1≠0,证明存在某个向量ak(2≤k≤m),使ak能由a1,a2,…,ak-1线性表示.
设f(x)=试问当a取何值时,f(x)在点x=0处,①连续,②可导,③一阶导数连续,④二阶导数存在.
设函数f(x)在闭区间[a,b]上连续(a,b>0),在(a,b)内可导,证明:在(a,b)内至少存在一点ξ,使得等式=f(ξ)-ξf’(ξ)成立。
设矩阵A=(a1,a2,a3,a4),其中a2,a3,a4线性无关,a1=2a2一a3,向量b=a1+a2+a3+a4,求方程组Ax=b的通解。
设f(x)在(-∞,+∞)连续,以T为周期,令F(x)=∫0xf(x)dt,求证:(Ⅰ)F(x)一定能表示成:F(x)=kx+φ(x),其中k为某常数,φ(x)是以T为周期的周期函数;(Ⅱ)∫0xf(t)dt=∫0Tf(x)dx;(Ⅲ)若又有f(x)
写出下列级数的通项:
设f(x)=3x2+Ax-3(x>0),A为正常数,问A至少为多少时,f(x)≥20?
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32,求A-1的特征值并判断A-1是否可对角化。
随机试题
现场控制主要是监督职能。()
水泥混凝土抗压强度试验结果要求,当三个试件中任何一个测值与中值之差超过中值的()时,则取中值为测定值。
下列机构中,具有反相自锁功能的是()。
与信息相关的战略包括()。
()长江大桥是长江安徽段公铁两用桥梁,有“世纪大桥”之称。
一位演员刚发生了不愉快的事情,但上台演喜剧时仍能谈笑风生,反映了其意志的()品质。
有人对“不到长城非好汉”这句名言的理解是:“如果不到长城,就不是好汉。”假定这种理解为真,则下列哪项判断必然为真?()
[*]
我曾经因为有几个大学生登山迷途丧生,而访问某位登山专家,其中一个问题是:“如果我们在半山腰,突然遇到大雨,应该怎么办?”登山专家说:“你应该向山顶走。”“为什么不往山下跑?山上风雨不是更大吗?”我怀疑地问。“往山顶走,固然风雨可能更大,却不足以威胁你的生命
Susanisthemost(experience)______teacherintheschool.
最新回复
(
0
)