首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为2阶矩阵,α为非零向量,但不是A的特征向量,且满足A2α+Aα-2α=0,试证 A可相似对角化.
设A为2阶矩阵,α为非零向量,但不是A的特征向量,且满足A2α+Aα-2α=0,试证 A可相似对角化.
admin
2019-12-26
58
问题
设A为2阶矩阵,α为非零向量,但不是A的特征向量,且满足A
2
α+Aα-2α=0,试证
A可相似对角化.
选项
答案
由A
T
α+Aα-2α=0[*](A
T
+A-2E)α=0,因为α≠0,所以齐次线性方程组(A
T
+A-2E)x=0有非零解,于是有 [*] 若|A+2E|≠0,则有(A+2E)(A-E)α=0[*](A-E)α=0[*]Aα=α,即α是A的特征向量,这与已知矛盾,所以 |A+2E|=0;同理可证|A-E|=0,所以A有两个不同的特征值λ
1
=-2,λ
2
=1,故A可相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/oUD4777K
0
考研数学三
相关试题推荐
已知f(x)的一个原函数为(1+sinx)lnx,求∫xf’(x)dx.
设某工厂生产甲乙两种产品,产量分别为x件和y件,利润函数为L(x,y)=6x一x2+16y一4y2—2(万元).已知生产这两种产品时,每件产品都要消耗原料2000kg,现有该原料12000kg,问两种产品各生产多少时总利润最大?最大利润是多少?
设A,B,C均为n阶矩阵,其中C可逆,且ABA=C-1,证明BAC=CAB.
设某商品的需求量Q与价格P的函数关系为Q=aPb,其中a和b是常数,且a>0,则该商品需求对价格的弹性=_________.
设线性相关,则a=___________.
已知随机变量X和Y的联合概率密度为求X和Y的联合分布函数F(x,y).
已知A是3阶实对称矩阵,满足A4+2A3+A2+2A=0,且秩r(A)=2.求矩阵A的全部特征值,并求秩r(A+E).
已知m个向量α1,αm线性相关,但其中任意m一1个向量都线性无关,证明:(Ⅰ)如果等式k1α1+…+kmαm=0成立,则系数后k1,…,km或者全为零,或者全不为零;(Ⅱ)如果等式k1α1+…+kmαm=0和等式l1α1+…+lmαm=0都成立,则其中
已知级数收敛.
求下列各函数的偏导数与全微分:设求dz;
随机试题
我国慢性肾衰竭最常见的病因为
A.温中健脾B.导滞和胃C.疏肝理气,和胃止痛D.疏肝泄热,和胃止痛E.温中散寒,和胃止痛某患者,症见上腹部胀痛,痛连胁肋,生气时胃痛加重。治疗原则为
钢筋混凝土梁在正常使用荷载下,下列叙述是正确的是()。
某水利工程中饱和无黏性土的相对密度为78%,位于地震设防烈度8度地区,水平地震动峰值加速度为0.30g,则液化临界相对密度(Dr)cr和液化判别情况应为下列()项。
有偿使用建设用地分为()等方式获得。
《关于开展治理商业贿赂专项工作的意见》是于()年下发的。
娟娟一闻到百合花的香味,马上说出花的名称。这种心理现象是()。
某保险公司接受了10000辆电动自行车的保险,每辆车每年的保费为12元.若车丢失,则赔偿车主1000元.假设车的丢失率为0.006,对于此项业务,试利用中心极限定理,求保险公司:一年获利润不少于40000元的概率β;
在函数中,可以用auto、extem、register和static这四个关键字中的一个来说明变量的存储类型,如果不说明存储类型,则默认的存储类型是()。
TheEconomistIntelligenceUnit(EIU)earnestlyattemptstomeasurewhichcountrywillprovidethebestopportunitiesforahealth
最新回复
(
0
)