首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有n元实二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)+…+(xn-1+an-1xn)2+(xn+anx1)2,其中ai(i=1,2,…,n)为实数.试问当a1,a2,…,an满足何种条件时,该二次型为正定二次型.
设有n元实二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)+…+(xn-1+an-1xn)2+(xn+anx1)2,其中ai(i=1,2,…,n)为实数.试问当a1,a2,…,an满足何种条件时,该二次型为正定二次型.
admin
2019-05-10
40
问题
设有n元实二次型f(x
1
,x
2
,…,x
n
)=(x
1
+a
1
x
2
)
2
+(x
2
+a
2
x
3
)+…+(x
n-1
+a
n-1
x
n
)
2
+(x
n
+a
n
x
1
)
2
,其中a
i
(i=1,2,…,n)为实数.试问当a
1
,a
2
,…,a
n
满足何种条件时,该二次型为正定二次型.
选项
答案
由于本题中的二次型含有较多字母,求其矩阵很不方便,求其矩阵的特征值及顺序主子式就更困难了,故只好采用正定的定义求解. 根据定义,二次型f正定是指对于任何X≠0,恒有f(X)=X
T
AX>0.由其逆否命题知,此条件等价于f(X)=X
T
AX≤0时,X=0.由题设知.f(X)<0不可能,故等价于f(X)=X
T
AX=0时有X=0,即等价于方程组 [*] 只有零解.当上述方程组只有零解时,就必有当X≠0时,x
1
+a
1
x
2
,x
2
+a
2
x
3
,…恒不全为零,从而恒有X
T
AX>0,则f(x)=X
T
AX是正定二次型.而上述方程组只有零解的充分必要条件是其系数行列式 [*]=1+(-1)
n-1
a
1
,a
2
,…,a
n
≠0 于是当1+(一1)
n-1
a
1
,a
2
,…,a
n
≠0时,以上方程组只有零解.因而当1+(-1)
n-1
a
1
,a
2
,…,a
n
≠0时,对任意不全为零的x
1
,x
2
,…,x
n
都有f(x
1
,x
2
,…,x
n
)>0.由二次型正定的定义知f(x
1
,x
2
,…,x
n
)为正定二次型.
解析
转载请注明原文地址:https://kaotiyun.com/show/oVV4777K
0
考研数学二
相关试题推荐
设A为m×n阶矩阵,且r(A)=m<n,则().
设连续函数f(χ)满足∫0χtf(χ-t)dt-1-cosχ,求f(χ)dχ.
设f(χ)在区间[0,1]上可积,当0≤χ≤1时,|f(χ)-f(y)|≤|arctanχ-arctany|,又f(1)=0,证明:|∫01f(χ)dχ|≤ln2.
设α1,α2,…,αm与β1,β2,…,βs为两个n维向量组,且r(α1,α2,…,αm)=r(β1,β2,…,βs)=r,则().
设A,B为n阶正定矩阵.证明:A+B为正定矩阵.
就a,b的不同取值,讨论方程组解的情况.
求微分方程χy=χ2+y2满足条件y|χ=e=2e的特解.
在某国,每年有比例为p的农村居民移居城镇,有比例为q的城镇居民移居农村。假设该国总人口数不变,且上述人口迁移的规律也不变。把n年后农村人口和城镇人口占总人口的比例依次记为xn和yn(xn+yn=1)。求关系式中的矩阵A;
设f(x)在x=a处n(n≥2)阶可导,且当x→a时f(x)是x-a的n阶无穷小,求证:f(x)的导函数f’(x)当→a时是x-a的a-1阶无穷小.
(99年)求初值问题的通解.
随机试题
行政复议机关应当为()查阅有关材料提供必要条件。
Inthequestfortheperfectlawns,homeownersacrossthecountryaretakingashortcut—anditistheenvironmentthatispaying
Sand:aschildrenweplayonitandasadultswerelaxonit.Itissomethingwecomplainaboutwhenitgetsinoureyesonawi
甲肝的传染源主要是
急性牙髓炎诊断的主要步骤是
当面源面积( ),面源扩散模式可以简化为点源扩散模式计算,但对扩散参数要进行修正。
关于分包,《中华人民共和国建筑法》的规定有()。
口岸检验检疫机构发现国家禁止携带进境物进境的需( )。
数据流图中带有箭头的线段表示的是()。
请结合这张图片写一篇80字左右的短文。
最新回复
(
0
)