首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有n元实二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)+…+(xn-1+an-1xn)2+(xn+anx1)2,其中ai(i=1,2,…,n)为实数.试问当a1,a2,…,an满足何种条件时,该二次型为正定二次型.
设有n元实二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)+…+(xn-1+an-1xn)2+(xn+anx1)2,其中ai(i=1,2,…,n)为实数.试问当a1,a2,…,an满足何种条件时,该二次型为正定二次型.
admin
2019-05-10
62
问题
设有n元实二次型f(x
1
,x
2
,…,x
n
)=(x
1
+a
1
x
2
)
2
+(x
2
+a
2
x
3
)+…+(x
n-1
+a
n-1
x
n
)
2
+(x
n
+a
n
x
1
)
2
,其中a
i
(i=1,2,…,n)为实数.试问当a
1
,a
2
,…,a
n
满足何种条件时,该二次型为正定二次型.
选项
答案
由于本题中的二次型含有较多字母,求其矩阵很不方便,求其矩阵的特征值及顺序主子式就更困难了,故只好采用正定的定义求解. 根据定义,二次型f正定是指对于任何X≠0,恒有f(X)=X
T
AX>0.由其逆否命题知,此条件等价于f(X)=X
T
AX≤0时,X=0.由题设知.f(X)<0不可能,故等价于f(X)=X
T
AX=0时有X=0,即等价于方程组 [*] 只有零解.当上述方程组只有零解时,就必有当X≠0时,x
1
+a
1
x
2
,x
2
+a
2
x
3
,…恒不全为零,从而恒有X
T
AX>0,则f(x)=X
T
AX是正定二次型.而上述方程组只有零解的充分必要条件是其系数行列式 [*]=1+(-1)
n-1
a
1
,a
2
,…,a
n
≠0 于是当1+(一1)
n-1
a
1
,a
2
,…,a
n
≠0时,以上方程组只有零解.因而当1+(-1)
n-1
a
1
,a
2
,…,a
n
≠0时,对任意不全为零的x
1
,x
2
,…,x
n
都有f(x
1
,x
2
,…,x
n
)>0.由二次型正定的定义知f(x
1
,x
2
,…,x
n
)为正定二次型.
解析
转载请注明原文地址:https://kaotiyun.com/show/oVV4777K
0
考研数学二
相关试题推荐
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得=ξf′(ξ).
确定常数a,b,c,使得=c.
函数f(χ)=,的连续区间是_______.
用待定系数法求方程yy〞+2yˊ=5的特解时,应设特解[].
微分方程y"-4y’=x2+cos2x的特解形式为().
物体由曲面.坐标面y=0及z=0围成,其密度为μ(x,y,z)=ycos(x+z),求物体的质量m.
计算,其中D为单位圆血x2+y2=1所围成的第一象限的部分.
1由拉格朗日中值定理,得arctan(x+1)一arctanx=,ξ∈(x,x+1).且当x→+∞时,ξ→+∞因此原式=
设函数f连续,若F(u,v)=dxdy,其中区域Duv为图中阴影部分,则=()
[2017年]设函数f(x)在[0,1]上具有二阶导数,且f(1)>0,<0.方程f(x)f″(x)+[f′(x)]2=0,在(0,1)内至少有两个不同的实根.
随机试题
(2013年4月,2010年10月,2009年10月,2009年4月)1956年,陈云在中共八大上提出了________的思想。
Conversationbeginsalmostthemomentwecomeintocontactwithanotherandcontinuesthroughouttheday【C1】______theaidofcel
Yettheseglobaltrendshidestarklydifferentnationalandregionalstories.VittorioColao,thebossofVodafone,whichoperat
为得到高信噪比的图像,应选择
健康是身体上、_______和_______的完好状态,而不仅是没有疾病和虚弱。
下列对疾病定义的描述中,不正确的是
A.罚款B.责令改正C.通报批评D.吊销执业证书E.暂停执业活动医师判断患者为非正常死亡但未按照规定报告,应给予的行政处罚是()
属于物业管理企业运行机制的是()。
在企业中,出于内源性动机的员工着重的是( )。
Thispassagegivesageneraldescriptionofwhyrecessionsoccurandhowtheymakeacountry’seconomyworse.Thevalueofgood
最新回复
(
0
)