首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2007年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导且存在相等的最大值,又f(a)=g(a),b(b)=g(b),证明: (I)存在η∈(a,b),使得f(η)=g(η); (Ⅱ)存在ξ∈(a,b),使得f"(ξ)=g"(ξ)。
(2007年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导且存在相等的最大值,又f(a)=g(a),b(b)=g(b),证明: (I)存在η∈(a,b),使得f(η)=g(η); (Ⅱ)存在ξ∈(a,b),使得f"(ξ)=g"(ξ)。
admin
2021-01-25
96
问题
(2007年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导且存在相等的最大值,又f(a)=g(a),b(b)=g(b),证明:
(I)存在η∈(a,b),使得f(η)=g(η);
(Ⅱ)存在ξ∈(a,b),使得f"(ξ)=g"(ξ)。
选项
答案
(I)设f(x),g(x)在(a,b)内某点c(c∈(a,b))同时取得最大值,则f(c)=g(c)。此时的c就是所求点η,使得f(η)=g(η)。 若两个函数取得最大值的点不同,则有f(x)=maxf(x),g(d)=maxg(x),故有 f(x)一g(x)>0,g(d)-f(d)<0, 由介值定理,在(c,d)[*](a,b)内肯定存在一点η使f(η)一g(η)=0,即f(η)=g(η)。 (Ⅱ)设F(x)=f(x)-g(x),由题设与(I)的结论知,F(x)在[a,b]上连续,(a,b)内二次可导,且存在η∈(a,b),使F(a)=F(η)=F(b)=0,分别在[a,η]与[η,b]上对F(x)应用罗尔定理可得,存在α∈(a,η),β∈(η,b)使F’(α)=F’(β)=0,所以F’(x)在[α,β]上满足罗尔定理的条件,因此根据罗尔定理知存在ξ∈(α,β)[*](a,b),使F"(ξ)=0,即f"(ξ)=g"(ξ)。
解析
转载请注明原文地址:https://kaotiyun.com/show/Gqx4777K
0
考研数学三
相关试题推荐
设A为三阶非零矩阵,B=,且AB=0,则Ax=0的通解是_______.
设.则a=______,b=______,c=______。
设f=x12+x22+5x32+2a1x2一2x1x2+4x2x3为正定二次型,则未知系数a的范围是__________。
设f(x)在x0的邻域内三阶连续可导,且f’(x0)=f’’(x0)=0,f’’’>0,则下列结论正确的是().
设z=z(x,y)二阶连续可偏导且满足方程,在变换下,原方程化为,求a,b的值.
设随机变量X,Y独立,且X~E(),Y的概率密度为f(y)=则D(XY)=.
下列反常积分收敛的是().
设D为xOy平面上的有界闭区域,z=f(x,y)在D上连续,在D内可偏导且满足,,若f(x,y)在D内没有零点,则f(x,y)在D上().
设齐次线性方程组Ax=0有解α1=(1,2,1,3)T,α2=(1,1,一1,1)T,α3=(1,3,3,5)T,α4=(4,5,一2,6)T.其余Ax=0的解向量均可由α1,α2,α3,α4线性表出,则Ax=0的基础解系为()
设z=z(x,y)是由9x2一54x),+90y2一6yz一z2+18=0确定的函数,求z=z(x,y)的极值点和极值.
随机试题
领导生命周期理论认为,在任务行为和关系行为两个领导维度表现为“高任务—低关系”的领导方式是()
生产关系的基础是()
根据建设工程项目施工成本的组成,下列属于直接成本的是()。
会计计量属性主要包括()。
下列关于成本分摊协议属性的说法中,正确的有()。
在CIF条款下,()负责租船订舱与投保,运费支付方式是()。
某研究者提出一个假想:海马部位可能与复杂认知加工有关,与简单认知加工无关。为此,他进行了如下实验:随机选取30只白鼠,切除海马,让其中一半学习简单迷津,另一半学习复杂迷津。在白鼠练习迷津过程中,简单组10次以内就出现完全正确的情况,而复杂组学习30次以后才
去自我中心主义是皮亚杰认知发展阶段论中哪个阶段的发展成就()
简述《中华民国临时约法》的主要内容、特点及历史意义。
曲线的斜渐近线为______.
最新回复
(
0
)