首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上二阶可导,f(a)=f(b)=0。试证明至少存在一点ξ∈(a,b)使
设f(x)在[a,b]上二阶可导,f(a)=f(b)=0。试证明至少存在一点ξ∈(a,b)使
admin
2019-01-05
86
问题
设f(x)在[a,b]上二阶可导,f(a)=f(b)=0。试证明至少存在一点ξ∈(a,b)使
选项
答案
(1)若f(x)≡0,则结论显然成立; (2)设|f(x
0
)|=[*]|f(x)|,x
0
∈(a,b),即函数f(x)在x=x
0
处取得最大值。又因为f(x)在[a,b]上二阶可导,则有f(x
0
)=0。将函数f(x)在x=x
0
处展成带有拉格朗日型余项的二阶泰勒展开式,即 f(x)=f(x
0
)+f(x
0
)(x—x
0
)+[*](x—x
0
)
2
,η=x
0
+θ(x—x
0
),0<θ<1。 由于f(a)=0,故将x=a代入上式可得 0= f(a)=f(x
0
)+f’(x
0
)(a— x
0
)+[*](a— x
0
)
2
, 即 |f"(ξ
1
)|=[*] a<ξ
1
<x
0
。 同理,有0=f(b)=f(x
0
)+f’(x)(b— x
0
)+[*](b— x
0
)
2
, 即 |f"(ξ
2
)|=[*] x
0
<ξ
2
<b。 [*] 当且仅当x
0
=[*]时,不等式中的等号成立。 故存在ξ使得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/oZW4777K
0
考研数学三
相关试题推荐
设随机变量X,Y相互独立,且X的概率分布为P(X=0)=P(X=2)=1/2,Y的概率密度为f(y)=求Z=X+Y的概率密度.
求级数的收敛域及和函数.
设f(x)∈c[a,b],在(a,b)内二阶可导.若f(A)=f(B)=∫0bf(x)dx=0,证明:存在η∈(a,b),使得f’’(η)=f(η).
微分方程的通解为___________.
设f(x)二阶可导,且f(0)=0,令(I)确定a的取值,使得g(x)为连续函数;(II)求g’(x)并讨论函数g’(x)的连续性.
设试确定常数a,b的值,使函数f(x)在x=0处可导.
设总体X服从韦布尔分布,密度函数为其中α>0为已知,θ>0是未知参数,试根据来自X的简单随机样本X1,X2,…,Xn,求θ的最大似然估计量.
已知四元齐次方程组的解都满足方程式(Ⅱ)x1+x2+x3=0.①求a的值.②求方程组(Ⅰ)的通解.
[2008年]设α,β为三维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:若α,β线性相关,则秩(A)<2.
随机试题
简述调查人员的三项基本职责。
Themanagerclaimedthathiscompanyhadthe()rightofpublication.
川乌的剧毒成分是
A.抗感染B.剖胸探查C.同定胸壁D.穿刺排气减压E.迅速封闭胸壁伤口开放性气胸的紧急处理应
砌筑拱和拱顶时,必须()。
按照《公路工程国内招标文件范本》的相关规定,投标人的投标文件必须包括()
某二级耐火等级的办公室,建筑高度为24m,其周边布置有多个二级耐火等级的建筑,下列关于该办公建筑与周边建筑物防火间距的做法中,正确的有()。
下列各项中,关于明显微小错报的说法中,不恰当的是()。
2005年5月3日,受中共中央和国务院的委托,中共中央台湾工作办公室、国务院台湾事务办公室主任陈云林宣布,大陆同胞向台湾同胞赠送一对象征和平团结友爱的大熊猫;同时宣布,大陆有关方面将于近期开放大陆居民赴台湾(),扩大开放台湾()准入并对其中
Ifyouwanttoimproveyourchild’sresultsatschool,【T1】______thattheydoplentyofexercise.Scientistshavealreadyshownt
最新回复
(
0
)