首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上有二阶连续导数,求证: ∫abf(x)dx=(b-a)[f(a)+f(b)]+∫abf’’(x)(x-a)(x-b)dx.
设f(x)在[a,b]上有二阶连续导数,求证: ∫abf(x)dx=(b-a)[f(a)+f(b)]+∫abf’’(x)(x-a)(x-b)dx.
admin
2018-06-27
100
问题
设f(x)在[a,b]上有二阶连续导数,求证:
∫
a
b
f(x)dx=
(b-a)[f(a)+f(b)]+
∫
a
b
f’’(x)(x-a)(x-b)dx.
选项
答案
连续利用分部积分有 ∫
a
b
f(x)dx=∫
a
b
f(x)d(x-b)=f(a)(b-a)-∫
a
b
f’(x)(x-b)d(x-a) =f(a)(b-a)+∫
a
b
(x-a)d[f’(x)(x-b)] =f(a)(b-a)+∫
a
b
(x-a)df(x)+∫
a
b
f’’(x)(x-a)(x-b)dx =f(a)(b-a)+f(b)(b-a)-∫f(x)dx+∫
a
b
f’’(x)(x-a)(x-b)dx, 移项后得 ∫
a
b
f(x)dx=[*](b-a)[f(a)+f(b)]+[*]∫
a
b
f’’(x)(x-a)(x-b)dx.
解析
很自然的想法是用分部积分法,但要注意“小技巧”:
∫
a
b
f(x)dx=∫
a
b
f(x)d(x-b),或∫
a
b
f(x)dx=∫
a
b
f(x)f(x-a)
这样改写后分部积分的首项简单.这一点考生应熟练掌握.
转载请注明原文地址:https://kaotiyun.com/show/oak4777K
0
考研数学二
相关试题推荐
设u=f(2x+3y,z),其中f具有二阶连续偏导数,而z=z(x,y)是由方程=1确定并满足z(0,0)=1的函数,求结果用fi’(0,1),fij’’(0,1)表示(i,j=1,2)
设f(x)在[a,b]上有二.阶导数,且f’(x)>0.对(I)中的ξ∈(a,b),求
设f(x)是(一∞,+∞)上的连续奇函数,且满足|f(x)|≤M,其中常数M>0,则函数F(x)=是(一∞,+∞)上的
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求向量组α1,α2,α3,α4的一个极大线性无关组,并把其他向量用该极大线性无关组
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求齐次方程组(i)的解;
(I)设f(x),g(x)在(a,b)可微,g(x)≠0,设f(x)在(一∞,+∞)二阶可导,且f(x)≤0,f’’(x)≥0(x∈(一∞,+∞)).求证:f(x)为常数(x∈(一∞,+∞)).
(I)设A,B是n阶矩阵,A有特征值λ=1,2,…,n.证明:AB和BA有相同的特征值,且AB~BA;(II)对一般的n阶矩阵A,B,是否必有AB~BA?说明理由.
设不定积分的结果中不含对数函数,求常数α,β,γ,δ应满足的充要条件,并计算此不定积分.
设抛物线y=ax2+bx+c过点(0,0)及(1,2),其中a
随机试题
设f(x)在点a可导,求下列极限:
Photoshop中选取好图像后,按___________选择“编辑”菜单下的___________菜单命令或按[Delete]键,可以清除选择区域内的图像。
健康促进的目的是
果酱样便见于
A.死细胞层B.淋巴细胞组分层C.单个核细胞层D.粒细胞层E.红细胞层位于Percoll分层液第三层的细胞
重度营养不良患儿突然出现心悸、出汗、头晕、呼吸浅促,脉搏减弱,首先考虑的是
房地产利用的限制包括()。
一国政府在对本国居民的境内境外所得汇总征税时,允许在其应纳税额中扣除境外的已纳税款,只就其差额缴税,这种避免国际重复征税的方法称为( )。
一只小型广告灯箱一年可以杀死约35万只昆虫。亮如白昼的夜晚还会严重影响昆虫特别是成虫的生命周期。昆虫是自然界食物链中的一个重要环节,很多小型动物、鸟类和蝙蝠以昆虫为主要食物,许多植物靠昆虫授粉,如果昆虫的种类和数量发生变化,必将严重影响生态环境。过度的照明
Theangryoldladydidn’tknowwho______forthebrokenglass.
最新回复
(
0
)