首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4都是3维非零向量,则下列命题中错误的是
设α1,α2,α3,α4都是3维非零向量,则下列命题中错误的是
admin
2016-07-20
45
问题
设α
1
,α
2
,α
3
,α
4
都是3维非零向量,则下列命题中错误的是
选项
A、如果α
4
不能用α
1
,α
2
,α
3
线性表示,则α
1
,α
2
,α
3
线性相关.
B、如果α
1
,α
2
,α
3
线性相关,α
2
,α
3
,α
4
线性相关,则α
1
,α
2
,α
4
线性相关.
C、如果α
3
不能用α
1
,α
2
线性表示,α
4
不能用α
2
,α
3
线性表示,则α
1
能用α
2
,α
3
,α
4
线性表示.
D、如果r(α
1
,α
1
+α
2
,α
2
+α
3
)=r(α
4
,α
1
+α
4
,α
2
+α
4
,α
3
+α
4
),则α
4
能用α
1
,α
2
,α
3
线性表示.
答案
B
解析
只要α
2
,α
3
线性相关,就有α
1
,α
2
,α
3
和α
2
,α
3
,α
4
都线性相关,但推不出α
1
,α
2
,α
4
线性相关.例如α
1
=(1,0,0),α
2
=α
3
=(0,1,0),α
4
=(0,0,1).
说明选项A、C的正确都可根据同一事实:如果3个3维向量线性无关,则任何3维向量都可以用它们线性表示.
选项A是其逆否命题.
选项C:α
2
是非零向量,α
3
不能用α
2
线性表示(因为α
3
不能用α
1
,α
2
线性表示),则α
2
,α
3
线性无关.而α
4
不能用α
2
,α
3
线性表示,α
2
,α
3
,α
4
线性无关.
选项D:r(α
1
,α
2
,α
3
)=r(α
1
,α
1
+α
2
,α
2
+α
3
)=r(α
4
,α
1
+α
4
,α
2
+α
4
,α
3
+α
4
)=r(α
4
,α
1
,α
2
,α
3
),因此α
4
能用α
1
,α
2
,α
3
线性表示.
转载请注明原文地址:https://kaotiyun.com/show/ocw4777K
0
考研数学一
相关试题推荐
设P(x0,y0)为椭圆3x2+a2y2=3a2(a>0)在第一象限部分上的一点,已知在P点处椭圆的切线、椭圆及两坐标轴所围图形D的面积的最小值为2(1-1/4π)求点P的坐标及a的值
设函数f(x)在(-∞,﹢∞)内有定义,且对任意x,y,有f(x+y)-f(x)=[f(x)-1]y+a(y),其中=0,f(0)=2,则f(1)=()
设都是线性方程组AX=0的解向量,只要系数矩阵A为().
设矩阵Am×n,r(A)=m<n,Em为m阶单位矩阵,下述结论中正确的是().
设向量组试问:当a,b,c满足什么条件时(1)β可由a1,a2,a3线性表出,且表示法唯一;(2)β可由a1,a2,a3线性表出,但表示法不唯一,并求出一般表达式.(3)β不能由a1,a2,a3线性表出;
设A,B为三阶矩阵,满足AB+E=A2+B,E为三阶单位矩阵,又知A=,求矩阵B.
设f(x)在(0,1)内有定义,且exf(x)与e-f(x)在(0,1)内都是单调增函数,证明:f(x)在(0,1)内连续.
设f(x)在[0,1]上连续,且f(x)<1,证明:2x-∫0xf(t)dt=1在(0,1)内有且仅有一个实根.
设A为四阶可逆方阵,将A第3列乘3倍再与第1列交换位置,得到矩阵B,则B-1A=__________.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.求AB-1.
随机试题
当用于涂敷生产前的测试结果中有一项试验不满足规定要求时,应再从该批产品中取()追加样品重新进行试验。
回归系数的取值范围是()
极化疗法用于急性心肌梗死的目的是()
张某驾车与李某发生碰撞,交警赶到现场后用数码相机拍摄了碰撞情况,后李某提起诉讼,要求张某赔偿损失,并向法院提交了一张光盘,内附交警拍摄的照片。该照片属于下列哪一种证据?(2014年卷三48题,单选)
下列各级数中发散的是()。
一般来讲,MA能够发出买进信号的市场条件是( )。
小王今年22岁,打算30岁购置一套价值200万元的住房,目前他有现金50万元,若i=8%,试计算他在今后8年中每年应存()万元。
某高校一名大学生,大一、大二两年成绩优秀,大学三年级时因病退学。对于该学生,学校应当()。
最有利于学习效果提高的动机水平为中等的动机水平。()
A.ThankyouforthelessoninartappreciationB.ItleavesmecoolC.Icantellthedifferencebetweenanetchingandalitho
最新回复
(
0
)