首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四阶矩阵A=(aij)不可逆,a12的代数余子式A12≠0,a1,a2,a3,a4为矩阵A的列向量组,A*为A的伴随矩阵,则方程组A*x=0的通解为
设四阶矩阵A=(aij)不可逆,a12的代数余子式A12≠0,a1,a2,a3,a4为矩阵A的列向量组,A*为A的伴随矩阵,则方程组A*x=0的通解为
admin
2021-01-25
137
问题
设四阶矩阵A=(a
ij
)不可逆,a
12
的代数余子式A
12
≠0,a
1
,a
2
,a
3
,a
4
为矩阵A的列向量组,A
*
为A的伴随矩阵,则方程组A
*
x=0的通解为
选项
A、x=k
1
a
1
+k
2
a
2
+k
3
a
3
,其中k
1
,k
2
,k
3
为任意常数.
B、x=k
1
a
1
+k
2
a
2
+k
3
a
4
,其中k
1
,k
2
,k
3
为任意常数.
C、x=k
1
a
1
+k
2
a
3
+k
3
a
4
,其中k
1
,k
2
,k
3
为任意常数.
D、x=k
1
a
2
+k
2
a
3
+k
3
a
4
,其中k
1
,k
2
,k
3
为任意常数.
答案
C
解析
由于A
12
≠0,r(A)=3,所以r(A
*
)=1,成基础解系.由AA
*
=(a
1
,a
2
,a
3
,a
4
)
=0
可知,A
11
a
1
+A
12
a
2
+A
13
a
3
+A
14
a
4
=O,因为A
12
≠0,因此a
2
可由a
1
,a
3
,a
4
线性表示,
故a
1
,a
3
,a
4
线性无关.因为r(A)=r(a
1
,a
2
,a
3
,a
4
)=3,因此a
1
,a
3
,a
4
为基础解系,故应选C.
又因为A′A=|A|E=O,A的每一列a
1
,a
2
,a
3
,a
4
是A
*
x=0的解向量.只要找到是A
*
x=0的3个无关解就构成基础解系.
转载请注明原文地址:https://kaotiyun.com/show/ofx4777K
0
考研数学三
相关试题推荐
求下列函数的导数y’:
设α1,α2,…,αs为线性方程组AX=0的一个基础解系.β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,其中t1,t2为实常数,试问t1,t2满足什么关系时,β1,β2,…,βs也为AX=0的
设函数z=z(x,y)由方程xy+yz+zx=1确定,求
设X1,X2,X3,X4是来自正态总体N(0,22)的简单随机样本,X=a(X1-2X2)2+b(3X3-4X4)2,则当a=______,b=________时,统计量X服从χ2分布的自由度为__________.
已知向量组(I):α1,α2,α3;(Ⅱ):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为秩(I)=秩(Ⅱ)=3,秩(Ⅲ)=4.证明:向量组α1,α2,α3,α5-α4的秩为4.
设总体X~N(μ,σ2),X1,X2,…,Xn为取自正态总体X的简单随机样本,且,求E(X1Sn2).
求微分方程x2y’+xy=y2满足初始条件y(1)=1的特解.
(2015年)设总体X的概率密度为:其中θ为未知参数,x1,x2,…,xn为来自该总体的简单随机样本。(Ⅰ)求θ的矩估计量;(Ⅱ)求θ的最大似然估计量。
[2017年]设随机变量X,Y相互独立,Y的概率密度为求P{Y≤E(y)};
(2016年)求极限
随机试题
三合潭古文化遗址包括三个文化层,不包括()。
唯物辩证法的总特征是()
糖酵解的第一个关键酶是()
结核性脑膜炎临床可见
患者,女,43岁,头部有外伤史,右颞疼痛如针刺,面色晦暗,舌质紫暗有瘀斑,脉涩。用药当首选
下列属于瘾疹证型的是
Recruitingtherightcandidatetofillavacancycanbeadifficultandcostlytask.Appointingthewrongpersoncouldbeanexp
一家茶店从周一到周日,每天都有3个品种的茶特价销售。可供特价销售的商品包括3种红茶,G,H和J;3种绿茶,K,L和O;3种乌龙茶,X,Y和Z。必须根据以下条件安排特价茶:(1)每天至少有一种红茶特价销售,每天至少有一种绿茶特价销售。(2)无论在哪天,如
设曲线г位于曲面z=χ2+y2上,г在χy平面上投影的极坐标方程为r=e*θ.(Ⅰ)求г上柱坐标(r,θ,z)=(1,0,1)的点M0的切线L的直角坐标方程;(Ⅱ)求£在平面П:χ+y+z=1的投影L′的方程.
Sherefusestocomehere.Couldyoupleasetellme______thatpreventsher?
最新回复
(
0
)