首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs为线性方程组AX=0的一个基础解系. β1=t1α1+t2α2, β2=t1α2+t2α3, …, βs=t1αs+t2α1, 其中t1,t2为实常数,试问t1,t2满足什么关系时,β1,β2,…,βs也为AX=0的
设α1,α2,…,αs为线性方程组AX=0的一个基础解系. β1=t1α1+t2α2, β2=t1α2+t2α3, …, βs=t1αs+t2α1, 其中t1,t2为实常数,试问t1,t2满足什么关系时,β1,β2,…,βs也为AX=0的
admin
2019-05-08
69
问题
设α
1
,α
2
,…,α
s
为线性方程组AX=0的一个基础解系.
β
1
=t
1
α
1
+t
2
α
2
, β
2
=t
1
α
2
+t
2
α
3
, …, β
s
=t
1
α
s
+t
2
α
1
,
其中t
1
,t
2
为实常数,试问t
1
,t
2
满足什么关系时,β
1
,β
2
,…,β
s
也为AX=0的一个基础解系.
选项
答案
由α
1
,α
2
,…,α
s
为AX=0的基础解系知,s=n-秩(A),因β
1
,β
2
,…,β
s
均为α
1
,α
2
,…,α
s
的线性组合,而α
1
,α
2
,…,α
s
又为AX=0的解,根据齐次方程解的性质知,β
i
(i=1,2,…,s)为AX=0的解.下面证β
1
,β
2
,…,β
s
线性无关,给出两种证法. 证一 设k
1
β
1
+k
2
β
2
+…+k
s
β
s
=0,即 (t
1
k
1
+t
2
k
s
)α
1
+(t
2
k
1
+t
1
k
2
)α
2
+(t
2
k
2
+t
1
k
3
)α
3
+…+(t
2
k
s-1
+t
s
k
s
)α
s
=0. 由于α
1
,α
2
,…,α
s
线性无关,于是得 [*] 因方程组①的系数矩阵的行列式为 [*] 故当t
1
s
+(-1)
s+1
t
2
s
≠0时,方程组①只有零解,即k
1
=k
2
=…=k
s
=0,从而β
1
,β
2
,…,β
s
线性无关,即当s为偶数且t
1
≠±t
2
,或s为奇数且t
1
≠-t
2
时,β
1
,β
2
,…,β
s
线性无关,从而β
1
,β
2
,…,β
s
也为AX=0的一个基础解系. 证二 由命题2.3.2.4(6)知,当s为偶数且t
1
≠±t
2
或s为奇数且t
1
≠-t
2
时,β
1
,β
2
,…,β
s
线性无关,从而β
1
,β
2
,…,β
s
也为AX=0的一个基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/SsJ4777K
0
考研数学三
相关试题推荐
设f(x)=,求f(x)的间断点并判断其类型.
级数的收敛域为______,和函数为______.
求∫0nπ|cosx|dx.
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(x)在[a,b]上不恒为常数.证明:存在ξ,η∈(a,b),使得f’(ξ)>0,f’(η)<0.
证明:当x>1时,.
设二维随机变量(X,Y)的分布函数为Ф(2x+1)Ф(2y一1),其中Ф(x)为标准正态分布函数,则(X,Y)~N________。
已知随机变量X服从(1,2)上的均匀分布,在X=x条件下Y服从参数为x的指数分布,则E(XY)=________。
设以X表示某一推销员一天花费在汽油上的款项(以美元计),以Y表示推销员一天所得的补贴(以美元计),已知X和Y的联合概率密度为(Ⅰ)求边缘概率密度fX(x),fY(y);(Ⅱ)求条件概率密度fY|X(y|x),fX|Y(x|y);(Ⅲ)求x=12时Y
随机试题
在这种路口遇到行人突然横穿怎么办?
张某系某县人民政府卫生局的一名副科长。2003年3月,张某因在街头与人争吵,失手将他人打伤,因而受到行政拘留处罚。县卫生局非常重视此事,鉴于其行为造成恶劣的社会影响,除对张某进行严肃批评教育外,并依照法定程序给予张某撤销副科长职务的行政处分。张某对此没有异
肝气上逆的临床表现有
女性,35岁,颈前区肿块10年,近年来易出汗、心悸,渐感呼吸困难。体检:晨起心率104/分,BPl20/60mmHg;无突眼,甲状腺Ⅲ度肿大,结节状,心电图示:窦性心律不齐。最佳的治疗方法是
下列霍乱休克抢救中哪项措施是错误的
影响药物制剂稳定性的处方因素不包括()
下列偏差分析方法的优点中,表格法所没有的是()。
北伐战争中在湖北和湖南战场上消灭的是()的主力。
汉代积极地经营西域地区,在河西走廊设有四郡,其中不包括()
若a,b都是质数,且a2+b=2003,则a+b的值等于().
最新回复
(
0
)