首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs为线性方程组AX=0的一个基础解系. β1=t1α1+t2α2, β2=t1α2+t2α3, …, βs=t1αs+t2α1, 其中t1,t2为实常数,试问t1,t2满足什么关系时,β1,β2,…,βs也为AX=0的
设α1,α2,…,αs为线性方程组AX=0的一个基础解系. β1=t1α1+t2α2, β2=t1α2+t2α3, …, βs=t1αs+t2α1, 其中t1,t2为实常数,试问t1,t2满足什么关系时,β1,β2,…,βs也为AX=0的
admin
2019-05-08
70
问题
设α
1
,α
2
,…,α
s
为线性方程组AX=0的一个基础解系.
β
1
=t
1
α
1
+t
2
α
2
, β
2
=t
1
α
2
+t
2
α
3
, …, β
s
=t
1
α
s
+t
2
α
1
,
其中t
1
,t
2
为实常数,试问t
1
,t
2
满足什么关系时,β
1
,β
2
,…,β
s
也为AX=0的一个基础解系.
选项
答案
由α
1
,α
2
,…,α
s
为AX=0的基础解系知,s=n-秩(A),因β
1
,β
2
,…,β
s
均为α
1
,α
2
,…,α
s
的线性组合,而α
1
,α
2
,…,α
s
又为AX=0的解,根据齐次方程解的性质知,β
i
(i=1,2,…,s)为AX=0的解.下面证β
1
,β
2
,…,β
s
线性无关,给出两种证法. 证一 设k
1
β
1
+k
2
β
2
+…+k
s
β
s
=0,即 (t
1
k
1
+t
2
k
s
)α
1
+(t
2
k
1
+t
1
k
2
)α
2
+(t
2
k
2
+t
1
k
3
)α
3
+…+(t
2
k
s-1
+t
s
k
s
)α
s
=0. 由于α
1
,α
2
,…,α
s
线性无关,于是得 [*] 因方程组①的系数矩阵的行列式为 [*] 故当t
1
s
+(-1)
s+1
t
2
s
≠0时,方程组①只有零解,即k
1
=k
2
=…=k
s
=0,从而β
1
,β
2
,…,β
s
线性无关,即当s为偶数且t
1
≠±t
2
,或s为奇数且t
1
≠-t
2
时,β
1
,β
2
,…,β
s
线性无关,从而β
1
,β
2
,…,β
s
也为AX=0的一个基础解系. 证二 由命题2.3.2.4(6)知,当s为偶数且t
1
≠±t
2
或s为奇数且t
1
≠-t
2
时,β
1
,β
2
,…,β
s
线性无关,从而β
1
,β
2
,…,β
s
也为AX=0的一个基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/SsJ4777K
0
考研数学三
相关试题推荐
设函数z=z(x,y)由方程x2+y2+z2=xyf(z2)所确定,其中f是可微函数,计算并化成最简形式.
微分方程xy’=+y的通解为______.
已知总体X的数学期望E(X)=μ,方差D(X)=σ2,X1,X2,…,Xn是取自总体X容量为2n的简单随机样本,样本均值为,统计量,求E(Y)。
已知随机变量X服从(1,2)上的均匀分布,在X=x条件下Y服从参数为x的指数分布,则E(XY)=________。
设随机变量X和Y分别服从,已知P{X=0,Y=0}=求:(Ⅰ)(X,Y)的分布;(Ⅱ)X和Y的相关系数;(Ⅲ)P{x=1|X2+Y2=1}。
设级数(an-an-1)收敛,且bn绝对收敛.证明:anbn绝对收敛.
设A为n阶正定矩阵.证明:对任意的可逆矩阵P,PTAP为正定矩阵.
设an=,对任意的参数λ,讨论级数的敛散性,并证明你的结论.
设f(x)二阶连续可导且f(0)=f’(0)=0,f’’(x)>0.曲线y=f(x)上任一点(x,f(x))(x≠0)处作切线,此切线在x轴上的截距为u,求.
随机试题
穿刺者应如何确定穿刺点输液后半小时病人出现高热、寒战、脉速伴恶心、呕吐、头疼症状,疑为
能产生溶血现象的化学物质( )。
企业以货币形式和非货币形式从各种来源取得的收入,为收入总额,其中包括()。
下列关于设备监理规划的说法中,正确的是( )。
价格指数调值公式中,考虑的因素有()。
劳动者享有()。
属于事实行为的是()。
PeopleintheUnitedStatesinthenineteenthcenturywere【C1】______bythe【C2】______thatunprecedentedchangeinthenatio
WhyisAlexanderthankfulforthereceiver?Forthereceiver’s______.What’sAlexander’sattitudetowardtheorder?Hecan’t
Oldpeoplearealwayssayingthattheyoungarenotwhattheywere.Thesamecommentismadefromgenerationtogenerationandi
最新回复
(
0
)