首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,且g(x)>0,证明:存在一点ξ∈a,6],使 ∫abf(x)g(x)dx=f(ξ)∫abg(x)dx.
设f(x)在[a,b]上连续,且g(x)>0,证明:存在一点ξ∈a,6],使 ∫abf(x)g(x)dx=f(ξ)∫abg(x)dx.
admin
2019-02-26
83
问题
设f(x)在[a,b]上连续,且g(x)>0,证明:存在一点ξ∈a,6],使
∫
a
b
f(x)g(x)dx=f(ξ)∫
a
b
g(x)dx.
选项
答案
因f(x)在[a,b]上连续,故m≤f(x)≤M,其中m,M分别是f(x)在[a,b]上的最小值与最大值. 因为g(x)>0,mg(x)≤f(x)g(x)≤Mg(x),两边在[a,b]上取积分,得 m∫
a
b
g(x)dx≤∫
a
b
f(x)g(x)dx≤M∫
a
b
g(x)dx, 即 [*] 从而存在ξ∈[a,b],使得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/oh04777K
0
考研数学一
相关试题推荐
设P(χ),q(χ),f(χ)均是关于χ的连续函数,y1(χ),y2(χ),y3(χ)是y〞+p(χ)y′+q(χ)y=f(χ)的3个线性无关的解,C1与C2是两个任意常数,则该非齐次线性微分方程的通解为()
设二次型f(χ1,χ2,χ3)=aχ12+2χ22+2χ32+2b1χ3(b>0),其中二次型的矩阵A的特征值的和为1,特征值的乘积为-12。(Ⅰ)求a,b的值;(Ⅱ)利用正交变换将二次型化为标准形,并写出所作的正交变换和对应的正交矩阵
设A=(aij)m×n,y=(y1,y2,…,yn)T,b=(b1,b2,…,bm)T,χ=(χ1,χ2,…,χm)T,证明方程组Ay=b有解的充分必要条件是方程组无解(其中0是n×1矩阵)。
函数y=f(χ)由参数方程所确定,则=_______。
曲线,在yOz平面上的投影方程为_________.
设f(x)在[0,1]上二阶连续可导,且f’(0)=f’(1).证明:存在ξ∈(0,1),使得2∫01f(x)dx=f(0)+f(1)+
设X1,X2,…,Xn,…相互独立且都服从参数为人(λ>0)的泊松分布,则当n→∞时,以Ф(x)为极限的是()
已知α1=(1,3,5,-1)T,α2=(2,7,a,4)T,α3=(5,17,-1,7)T。(Ⅰ)若α1,α2,α3线性相关,求a的值;(Ⅱ)当a=3时,求与α1,α2,α3都正交的非零向量α4;(Ⅲ)当a=3时,利用(Ⅱ)的结果,证明α1,α2,
设α1,α2,…,αn是n个n维的线性无关向量组,an+1=k1α1+k2α2+…+knαn,其中k1,k2,…,kn全不为零。证明:α1,α2,…,αn,αn+1中任意n个向量线性无关。
随机试题
A.毛果芸香碱B.甘露醇C.溴莫尼定D.卡替洛尔E.布林佐胺属于M胆碱受体激动剂的降眼压药是
EvaluatingSourcesofHealthInformationMakinggoodchoicesaboutyourownhealthrequiresreasonableevaluation.Akeyfir
黄疸的辨证,应首辨
营业费用、管理费用和待摊费用都是损益类账户。()
在纳税审核中,发现企业以前年度多计收益少计费用的情况(决算报表已编制),应在()贷方进行反映。
某企业月初结存材料的计划成本为1000万元,成本差异为节约10万元;本月入库材料的计划成本为1000万元;成本差异为超支4万元。当月领用材料的计划成本为1500万元。假定该企业月末计算的材料成本差异率,分配和结转材料成本差异,则当月生产车间领用材料的实际成
根据《会计法》的规定,下列各项中,属于会计核算内容的有()。
对中国字画的落款,下列表述错误的是:
由6个字符的7位ASCII编码排列,再加上水平垂直奇偶校验位构成下列矩阵(最后一列为水平奇偶校验位,最后一行为垂直奇偶校验位)。字符: 则X1X2X3X4处的比特
Japanesefactoryworkersareguaranteedlifetimejobs,bonusespaidonthebasisofproductivityandcorporateprofits,andawa
最新回复
(
0
)