首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4是四维非零列向量,A=(α1,α2,α3,α4),A*为A的伴随矩阵,又知方程组AX=0的基础解系为(1,0,2,0)T,则方程组A*x=0基础解系为( ).
设α1,α2,α3,α4是四维非零列向量,A=(α1,α2,α3,α4),A*为A的伴随矩阵,又知方程组AX=0的基础解系为(1,0,2,0)T,则方程组A*x=0基础解系为( ).
admin
2017-10-25
71
问题
设α
1
,α
2
,α
3
,α
4
是四维非零列向量,A=(α
1
,α
2
,α
3
,α
4
),A
*
为A的伴随矩阵,又知方程组AX=0的基础解系为(1,0,2,0)
T
,则方程组A
*
x=0基础解系为( ).
选项
A、α
1
,α
2
,α
3
B、α
1
+α
2
,α
2
+α
3
,α
3
+α
1
C、α
2
,α
3
,α
4
或α
1
,α
2
,α
4
D、α
1
+α
2
,α
2
+α
3
,α
3
+α
4
,α
4
+α
1
答案
C
解析
首先确定A的秩,进而确定A
*
的秩;利用A与A
*
的关系及已知条件即可判别.
由Ax=0的基础解系仅含有一个解向量知,R(A)=3,从而R(A
*
)=1,于是方程组A
*
x=0的基础解系中含有3个解向量.
又因为A
*
A=A
*
(α
1
,α
2
,α
3
,α
4
)=|A|E=O,
所以向量α
1
,α
2
,α
2
,α
4
是方程组A
*
x=0的解.
因为(1,0,2,0)
T
是Ax=0的解,故有α
1
+2α
3
=0,即α
1
,α
3
线性相关.从而,向量组α
1
,α
2
,α
3
与向量组α
1
,α
2
,α
3
,α
4
均线性相关,故排除(A)、(B)、(D)选项.
事实上,由α
1
+2α
3
=0,得α
1
=0α
2
-2α
3
+0α
4
,即α
1
可由α
2
,α
3
,α
4
线性表示,又R(α
1
,α
2
,α
3
,α
4
)=3,所以α
2
,α
3
,α
4
线性无关,即α
2
,α
3
,α
4
为A
*
x=0的一个基础解系.
故应选(C).
转载请注明原文地址:https://kaotiyun.com/show/ojr4777K
0
考研数学一
相关试题推荐
设X,Y相互独立且都服从N(0,4)分布,则().
因为实对称矩阵不同的特征值对应的特征向量正交,所以有[*]
设λ0为A的特征值.(1)证明:AT与A特征值相等;(2)求A2,AT+2A+3E的特征值;(3)若|A|≠0,求A-1,A*,E—A-1的特征值.
Ω是由x2+y2一z2与x=a(a>0)所围成的区域,则三重积分在柱面坐标系下累次积分的形式为()
设则α,β的值为_________.
设f(x)连续,,求φ’(x)并讨论φ’(x)在x=0处的连续性.
设函数f(x)在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f’(x)≠1,证明:在(0,1)区间内有且仅有一个x,使得f(x)=x.
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b),使得f"(ξ)=g"(ξ).
设g(x)二阶可导,且f(x)=(Ⅰ)求常数a,使得f(x)在x=0处连续;(Ⅱ)求f’(x),并讨论f’(x)在x=0处的连续性.
随机试题
根据格拉斯哥(GCs)计分法,下列错误的是()
法的各种具体表现形式是指( )法律形式也叫做( )
药物解离形式和非解离形式的比例与药物的解离常数(pka)和体液介质的pH有关,弱碱性药物在体内随介质pH增大()。
所有事故发生之日起30日内,事故造成的伤亡人数发生变化的,应当及时补报。()
招标采购合作博弈主要涉及的事项有()。
下列币种中,通常采取直接标价法的是()。
关于存款人银行结算账户管理的下列表述中,不符合法律规定的是()。
实践性强、难度大的内容以及初步概念的引入课不适宜运用尝试教学法。()
考生文件夹下存在一个数据库文件“samp2.accdb”,里面已经设计好表对象“tStud”、“tCourse”、“tScore”和“tTemp”。试按以下要求完成设计:创建一个查询,将表“tStud”中男学生的信息追加到“tTemp”表对应的“学号”
Iboughtanewsweaterinanewly-openclothes-market.Butwhatapityitwasthatthesweater______whenIwashedit.
最新回复
(
0
)