微分方程y’’一4y=e2x的通解为y=_____________.

admin2019-08-11  28

问题 微分方程y’’一4y=e2x的通解为y=_____________.

选项

答案[*]

解析 对应齐次微分方程的特征方程为r2一4=0,解得r1=2,r2=一2.故y’’一4y=0的通解为y1=C1e-2x+C2e2x,其中C1,C2为任意常数.由于非齐次项为f(x)=e2x,α=2为特征方程的单根,因此原方程的特解可设为y*=Axe2x,代入原方程可求出
故所求通解为
转载请注明原文地址:https://kaotiyun.com/show/otN4777K
0

随机试题
最新回复(0)