首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[0,+∞)上可导,f(0)=0,g(x)是f(x)的反函数,且∫0f(x)g(t)dt+∫0xf(t)dt=xex-ex+1. 求f(x),并要求证明:得出来的f(x)在区间[0,+∞)上的确存在反函数.
设f(x)在区间[0,+∞)上可导,f(0)=0,g(x)是f(x)的反函数,且∫0f(x)g(t)dt+∫0xf(t)dt=xex-ex+1. 求f(x),并要求证明:得出来的f(x)在区间[0,+∞)上的确存在反函数.
admin
2018-07-23
104
问题
设f(x)在区间[0,+∞)上可导,f(0)=0,g(x)是f(x)的反函数,且∫
0
f(x)
g(t)dt+∫
0
x
f(t)dt=xe
x
-e
x
+1.
求f(x),并要求证明:得出来的f(x)在区间[0,+∞)上的确存在反函数.
选项
答案
将∫
0
f(x)
g(t)dt+∫
0
x
f(t)dt=xe
x
-e
x
+1 两边对x求导,得 g[f(x)]fˊ(x)+f(x)=xe
x
. 由于g[f(x)]=x,上式成为 xfˊ(x)+ f(x)=xe
x
. 当x>0时,上式可以写为 [*] 由一阶线性微分方程的通解公式,得通解 [*] 由f(x)在x=0处可导且f(0)=0,得 [*] 当且仅当C=1时上式成立,所以 [*] 下面证明上面得到的f(x)在区间[0,+∞)上的确存在反函数.由所得到的表达式f(x)在区间[0,+∞)上连续,所以只要证明f(x)在(0,+∞)上单调即可.由 [*] 取其分子,记为 φ(x)=x
2
e
x
-xe
x
+e
x
-1, 有φ(0)=0,φˊ(x)=(x
2
+x)e
x
>0,当x∈(0,+∞)时,φ(x)> φ(0)=0,fˊ(x)>0.所以,f(x)在区间[0,+∞)上存在反函数.证毕.
解析
转载请注明原文地址:https://kaotiyun.com/show/2oj4777K
0
考研数学二
相关试题推荐
设函数f(x)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量y的线性主部为0.1,则f’(1)=_______.
[*]
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(Ⅰ)AX=0和(Ⅱ)ATAX=0必有().
若曲线y=x2+ax+b和2y=-1+xy3在点(1,-1)处相切,其中a,b是常数,则().
若f(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2,则函数f(x)在区间(1,2)内
设f(x)=arcsinx,ξ为f(x)在闭区间[0,t]上拉格朗日中值定理的中值点,0<t<1,求极限.
求极限:
设则()
设则d2y/dx2=_______。
随机试题
接收到的(偶性)汉明码为1001101B,其中的信息为()。
下列关于微动脉的描述,错误的是
骨质疏松症最常见的症状是
A.磺酰脲类B.双胍类C.α-葡萄糖苷酶抑制剂类D.噻唑烷二酮类E.胰岛素衍生物类格列齐特
玉竹粉碎一般采用
围护结构热桥部分的温度值如果()的露点温度,会造成表面结露。
【2015年济南市真题】儿童认识到客体尽管在外形上发生了变化,但其特有的属性不变,这说明儿童的认知发展进入具体运算阶段。()
1931年1月至1935年1月,以王明为代表的“左”倾错误给中国革命带来严重危害,主要错误有()
有以下程序:#include<stdio.h>unsignedfun(unsignednum){unsignedk=1;do{k*=num%10;num/=10;}while(num);
A、Theymakehimfeelgood.B、Theymakenoimpactonhim.C、Theyborehim.D、Theymakehimangry.A[听力原文]HowdoesprofessorHawl
最新回复
(
0
)