首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设数列{xn}满足:x1>0,(n=1,2,…).证明:{xn}收敛,并求
设数列{xn}满足:x1>0,(n=1,2,…).证明:{xn}收敛,并求
admin
2018-03-26
83
问题
设数列{x
n
}满足:x
1
>0,
(n=1,2,…).证明:{x
n
}收敛,并求
选项
答案
设f(x)=e
x
一1一x(x>0),则有 f’(x)=e
x
一1>0,因此f(x)>f(0)=0,[*] 从而[*]可知x
2
>0. 猜想x
n
>0,现用数学归纳法证明. 当n=1时,x
1
>0,成立; 假设当n=k(k=2,3,…)时,有x
k
>0,则n=k+1时,有 [*] 从而得知无论n取任何自然数,都有x
n
>0,即数列{x
n
}有下界. [*] 当x>0时,g’(x)=e
x
一e
x
一xe
x
=一xe
x
<0. 因此g(x)单调递减,g(x)<g(0)=0,即有e
x
一1<xe
x
, 因此x
n+1
一x
n
=[*]<ln1=0,可知数列{x
n
}单调递减. 由单调有界准则可知数列{x
n
}收敛. 设[*],则有Ae
A
=e
A
一1(A≥0).可知A=0是该方程的解. 因为当x>0时,g(x)=e
x
一1一xe
x
<g(0)=0. 因此A=0是方程Ae
A
=e
A
一1唯一的解.故[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/owX4777K
0
考研数学三
相关试题推荐
证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b一a).
设某商品的需求量D和供给量s,各自对价格P的函数为,s(p)=bp,且p是时间t的函数并满足方程(a、b、k为正常数),求:(1)需求量与供给量相等时的均衡价格Pe;(2)当t=0,P=1时的价格函数p(t);(3).
设D1是由抛物线y=2x2和直线x=a,x=2及y=0所围成的平面区域;D2是由抛物线y=2x2和直线y=0,x=a所围成的平面区域,其中0<a<2.试求D1绕x轴旋转而成的旋转体体积V1;D2绕y轴旋转而成的旋转体体积V2;
一一3y=e-x的通解为__________.
设X,y为两个随机变量,其中E(X)=2,E(y)=-1,D(X)=9,D(Y)=16,且X,Y的相关系数为ρ=,由切比雪夫不等式得P{|X+Y一1|≤10}≥().
设随机变量X1,X2,…,Xn相互独立,且都在区间(-1,1)上服从均匀分布,则()
设f(x,y)在点0(0,0)的某邻域U内连续,且.试讨论f(0,0)是否为f(x,y)的极值?是极大值还是极小值?
设有方程yˊ+P(x)y=x2,其中P(x)=,试求在(-∞,+∞)内的连续函数y=y(x),使之在(-∞,1)和(1,+∞)内都满足方程,且满足初值条件y(0)=2.
设总体X~N(a,2),Y~N(b,2),且独立,由分别来自总体X和Y的容量分别为m和n的简单随机样本得样本方差SX2和SY2,则统计量T=服从的分布是_________.
设f(x)是连续函数.求初值问题的解,其中a>0;
随机试题
竹叶石膏汤的组成有
麻疹的主要传播途径是
溶于挥发性有机溶剂中的丙烯酸聚合物,丙烯酸聚合物占溶液总重量的45%
从财务管理角度,商业银行流动比率为()左右应属正常。
近日,瑞典公布的一项最新研究结果显示,那些饱受折磨的牛皮癣病患者死于心脏病的可能性要比其他人高很多。据英国《每日邮报》10月29日报道,由瑞典科学进行的研究发现,对于患牛皮癣病的患者来说,他们实际死于心脏病的概率要比其他人高50%。从年龄角度来看,患者的年
把下面的六个图形分为两类,使每一类图形都有各自的共同特征或规律,分类正确的一项是:
中共中央政治局常务委员会2022年3月31日召开会议,习近平总书记主持会议并发表重要讲话。会议指出,要坚持统筹()和(),()决不能以牺牲()为代价。
设f(x)=sint2dt,g(x)=x3+x4,则当x→0时,f(x)是g(x)的().
TelevisionpitchmenforproductslikePajamaJeansandlightedslippersoncetriedtogetviewerstoplacetheirordersbyphone
Showmeyourdrivinglicence,______?
最新回复
(
0
)