首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维列向量组α1,…,αm(m<n)线性无关,则n维列向量组β1,…,βm,线性无关的允分必要条件为
设n维列向量组α1,…,αm(m<n)线性无关,则n维列向量组β1,…,βm,线性无关的允分必要条件为
admin
2018-07-31
40
问题
设n维列向量组α
1
,…,α
m
(m<n)线性无关,则n维列向量组β
1
,…,β
m
,线性无关的允分必要条件为
选项
A、向量组α
1
,…,α
m
可由向量组β
1
,…,β
m
线性表示.
B、向量组β
1
,…,β
m
可由向量组α
1
,…,α
m
线性表示.
C、向量组α
1
,…,α
m
与向量组β
1
,…,β
m
等价.
D、矩阵A=[α
1
,…,α
m
]与矩阵B=[β
1
,…,β
m
]等价.
答案
D
解析
记向量组(Ⅰ):α
1
,…,α
m
,向量组(Ⅱ):β
1
,…,β
m
,由于m<n.故当(Ⅱ)线性无关时,(Ⅰ)与(Ⅱ)之间不一定存在线性表示。例如,向量组组α
1
=
,二者都是线性无关组,二者的秩都是2.但二者之间不存在线性表示,故备选项(A)、(B)及(C)都不对,因此只有(D)正确。
转载请注明原文地址:https://kaotiyun.com/show/owg4777K
0
考研数学一
相关试题推荐
设f(x)在[a,b]上连续可导,且f(a)=f(b)=0.证明:|f(x)|≤∫ab|f’(x)|dx(a<x<b).
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22—2y32,且A*+2E的非零特征值对应的特征向量为α=,求此二次型.
设A,B为n阶正定矩阵.证明:A+B为正定矩阵.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.(1)求矩阵A的特征值;(2)判断矩阵A可否对角化.
计算,其中D为单位圆x2+y2=1所围成的第一象限的部分.
某商店经销某种商品,每周进货数量X与顾客对该种商品的需求量Y之间是相互独立的,且都服从[10,20]上的均匀分布.商店每出售一单位商品可获利1000元;若需求量超过了进货量,商店可从其他商店调剂供应,这时每单位商品获利500元,计算此商店经销该种商品每周所
设A=(aij)n×n是非零矩阵,且|A|中每个元素aij与其代数余子式Aij相等.证明:|A|≠0.
设A是n阶方阵,A+E可逆,且f(A)=(E—A)(E+A)-1.证明:(1)[E+f(A)](E+A)=2E;(2)f[f(A)]=A.
随机试题
下列对应关系中,哪项不正确:
以下哪项不属于治疗性沟通的概念()。
A.一级标准品B.二级标准品C.三级标准品D.四级标准品E.五级标准品实验室常用的校准品属于
张某为某煤矿工人,2002年10月被诊断为一期煤矽肺,按照《职业病防治法》关于职业病待遇规定,张某要求下列待遇中,哪一项是没有规定的
中国药典中,检查维生素E的生育酚杂质所采用的检查方法是
常用的菌斑染色剂是()。
从事职业卫生技术服务的机构不按《职业病防治法》履行法定职责的,由()责令立即停止违法行为,给予警告并没收违法所得,并按违法所得的多少给予相应的罚款。
王某就职于境内甲公司。2014年7月有关收入情况如下:(1)取得工资收入5000元,第二季度奖金6000元。(2)为乙公司提供技术服务,取得服务费3900元、交通费300元、餐费200元、资料费100元、通信费50元。(3)体育彩票中奖10000元,
若当x→0时,sin(kx2)~1一cosx,则k=___________.
BilingualeducationiscontroversialintheUnitedStates.【C1】______,agrowingbodyofresearchshowsthat【C2】______speakingt
最新回复
(
0
)