首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维列向量组α1,…,αm(m<n)线性无关,则n维列向量组β1,…,βm,线性无关的允分必要条件为
设n维列向量组α1,…,αm(m<n)线性无关,则n维列向量组β1,…,βm,线性无关的允分必要条件为
admin
2018-07-31
33
问题
设n维列向量组α
1
,…,α
m
(m<n)线性无关,则n维列向量组β
1
,…,β
m
,线性无关的允分必要条件为
选项
A、向量组α
1
,…,α
m
可由向量组β
1
,…,β
m
线性表示.
B、向量组β
1
,…,β
m
可由向量组α
1
,…,α
m
线性表示.
C、向量组α
1
,…,α
m
与向量组β
1
,…,β
m
等价.
D、矩阵A=[α
1
,…,α
m
]与矩阵B=[β
1
,…,β
m
]等价.
答案
D
解析
记向量组(Ⅰ):α
1
,…,α
m
,向量组(Ⅱ):β
1
,…,β
m
,由于m<n.故当(Ⅱ)线性无关时,(Ⅰ)与(Ⅱ)之间不一定存在线性表示。例如,向量组组α
1
=
,二者都是线性无关组,二者的秩都是2.但二者之间不存在线性表示,故备选项(A)、(B)及(C)都不对,因此只有(D)正确。
转载请注明原文地址:https://kaotiyun.com/show/owg4777K
0
考研数学一
相关试题推荐
设f(x)在[a,b]上连续可导,且f(a)=f(b)=0.证明:|f(x)|≤∫ab|f’(x)|dx(a<x<b).
设f(x)在[a,b]上连续且单调减少.证明:当0<k<1时,∫0kf(x)dx≥k∫01f(x)dx.
设A,B为n阶正定矩阵.证明:A+B为正定矩阵.
设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn—1=αn,Aαn=0.(1)证明:α1,α2,…,αn线性无关;(2)求A的特征值与特征向量.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.(1)求矩阵A的特征值;(2)判断矩阵A可否对角化.
设矩薛A满足(2E一C-1B)AT=C-1,且B=,求矩阵A.
二阶常系数非齐次线性微分方程y"一2y’一3y=(2x+1)e-x的特解形式为().
设A,B为同阶方阵。(Ⅰ)若A,B相似,证明A,B的特征多项式相等;(Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立;(Ⅲ)当A,B均为实对称矩阵时,证明(Ⅰ)的逆命题成立。
随机试题
心室肌细胞产生动作电位时,其膜内电位由-90mV变为0mV的过程称为
患者因饮食不洁,突发频繁呕吐,腹泻,呈水样便,无黏液及脓血,亦无里急后重,体温升高。应首先考虑的是
关于模板工程的说法,正确的有()。
落实企业质量体系的内部审核程序、开展内部质量审核活动的主要目的是( )。
一栋18层的旅馆,建筑高度68m,设有两个防烟楼梯间,一部消防电梯与一个楼梯间合用前室,两个楼梯间可开启外窗,合用前室和前室无外窗,且每层有一条长40m,宽1.4m的无自然采光的内走道。问题:该旅馆是否需要设置消防卷盘?消防卷盘如何布置?
原始凭证的真实性审查不包括()。
下列选项中作品、作家、朝代(国别)搭配有误的一项是()。
公安机关对醉酒人采取保护性措施约束时:
第一阶段是蜜月阶段,在这一阶段中新的经历被视作是生动有趣、令人愉快和富有魅力的。
Oneofthemostdangerousaccidentsiscatchingfire.Youshouldbecarefulwithfires.Peoplewhoarenotcarefulsometimescau
最新回复
(
0
)