首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维列向量组α1,…,αm(m<n)线性无关,则n维列向量组β1,…,βm,线性无关的允分必要条件为
设n维列向量组α1,…,αm(m<n)线性无关,则n维列向量组β1,…,βm,线性无关的允分必要条件为
admin
2018-07-31
18
问题
设n维列向量组α
1
,…,α
m
(m<n)线性无关,则n维列向量组β
1
,…,β
m
,线性无关的允分必要条件为
选项
A、向量组α
1
,…,α
m
可由向量组β
1
,…,β
m
线性表示.
B、向量组β
1
,…,β
m
可由向量组α
1
,…,α
m
线性表示.
C、向量组α
1
,…,α
m
与向量组β
1
,…,β
m
等价.
D、矩阵A=[α
1
,…,α
m
]与矩阵B=[β
1
,…,β
m
]等价.
答案
D
解析
记向量组(Ⅰ):α
1
,…,α
m
,向量组(Ⅱ):β
1
,…,β
m
,由于m<n.故当(Ⅱ)线性无关时,(Ⅰ)与(Ⅱ)之间不一定存在线性表示。例如,向量组组α
1
=
,二者都是线性无关组,二者的秩都是2.但二者之间不存在线性表示,故备选项(A)、(B)及(C)都不对,因此只有(D)正确。
转载请注明原文地址:https://kaotiyun.com/show/owg4777K
0
考研数学一
相关试题推荐
设f(x)在(0,+∞)内连续且单调减少.证明: ∫1n+1f(x)dx≤f(k)≤f(1)+∫1nf(x)dx.
设f(x)在(一∞,+∞)上有定义,且对任意的x,y∈(一∞,+∞)有|f(x)一f(y)|≤|x—y|.证明:|∫ab|f(x)dx一(b一a)f(a)|≤(b一a)2.
设方程组为矩阵A的分别属于特征值λ1=1,λ2=一2,λ3=一1的特征向量.(1)求A;(2)求|A*+3E|.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.(1)求矩阵A的特征值;(2)判断矩阵A可否对角化.
设Y~,求矩阵A可对角化的概率.
计算,其中D为单位圆x2+y2=1所围成的第一象限的部分.
设a是n维单位列向量,A=E一ααT.证明:r(A)<n.
设矩薛A满足(2E一C-1B)AT=C-1,且B=,求矩阵A.
设A=(aij)为n阶方阵,证明:对任意的n维列向量X,都有XTAX=0,A为反对称矩阵.
随机试题
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
依照《律师法》的规定,下列关于律师性质的表述中正确的是
美和美的东西蒋孔阳什么是美?这个问题看似十分简单,一朵花、一片晚霞、一首诗、一曲音乐,我们觉得美;穿的衣服,用的家具,我们都会用审美的眼光,
下列各项不属于涩脉主病的是
心功能不全患者使用β-受体阻滞剂时应注意的问题中哪一项不正确?
工程项目的质量计划是在质量图标、()的基础上制定的。
税收基本法是税法体系的主体和核心,《中华人民共和国税收征收管理法》就是我国的税收基本法。()
开个农民运动会:(1)你认为重点在哪?(2)你怎么组织?(3)怎么调动积极性?
操作系统的功能不包括下面的哪一项?
Thepurposeofmeninventingcertainsoundsis______.WhichofthefollowingstatementsisNOTtrue?
最新回复
(
0
)