首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶非零矩阵,且存在自然数k,使得Ak=0.证明:A不可以对角化.
设A为n阶非零矩阵,且存在自然数k,使得Ak=0.证明:A不可以对角化.
admin
2018-04-15
84
问题
设A为n阶非零矩阵,且存在自然数k,使得A
k
=0.证明:A不可以对角化.
选项
答案
方法一 令AX=λX(x≠0),则有A
k
X=λ
k
X,因为A
k
=O,所以λ
k
X=0,注意到X≠0,故λ
k
=0,从而λ=0,即矩阵A只有特征值0. 因为r(0E—A)=r(A)≥1,所以方程组(0E一A)X=0的基础解系至多含n一1个线性无关的解向量,故矩阵A不可对角化. 方法二 设矩阵A可以对角化,即存在可逆阵P,使得 [*] 两边k次幂得 [*] 从而有λ
1
=λ
2
=…=λ
n
=0, 于是P
-1
AP=O,进一步得A=O,矛盾,所以矩阵A不可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/p0X4777K
0
考研数学三
相关试题推荐
设A为三阶矩阵,a1=,a2=,a3=为非齐次线性方程组AX=的解,则
设f(x)在[0,1]上二阶连续可导,且f’(0)=f’(1).证明:存在ξ∈(0,1),使得f(x)dx=f(0)+f(1)+(ξ).
设A,B均为n阶非零矩阵,且A2+A=0,B2+B=0,证明A,B有公共特征值λ=-1;
已知实二次型f(x1,x2,x2)=xTAX的矩阵A满足,且ξ1=(1,2,1)T,ξ2=(1,-1,1)T是齐次线性方程组Ax=0一个基础解系.求出该二次型.
由方程sin(xy)-=1所确定的曲线y=y(x)在x=0处的切线方程为________.
设三元二次型f(x1,x2,x3)=xTAx的负惯性指数为q=1,且二次型的矩阵A满足A2-A=6E,则二次型xTAx在正交变换下的标准形是()
已知A是3阶方阵,A的每行元素之和为3,且齐次线性方程组Ax=0有通解k1(1,2,一2)T+k2(2,1,2)T,其中k1,k2是任意常数,α=(1,1,1)T.(Ⅰ)证明:对任意的一个3维向量β,向量Aβ和α线性相关;(Ⅱ)若β=(
设f(x,y)连续,且f(x,y)=xy+其中D是由y=0,y=x2,x=1所围区域,则f(x,y)等于()
曲线y=x(x一1)(2一x)与x轴所围成图形面积可表示为()
随机试题
机动车在高速公路上行驶,________。
当定义一水平或垂直参考时,可以选择那些对象?
临床上牙髓息肉一般见于
A.顺式作用元件B.反式作用因子C.操纵子D.调节蛋白E.传感器
某银行的核心资本是500亿元人民币,则其附属资本的上限是()。
国债发行的前提是()。
“二十里松行欲尽,青山捧出梵王宫"描述的是()。
中共十四大明确提出,我国经济体制改革的目标是()
It’sanannualback-to-schoolroutine.Onemorningyouwavegoodbye,andthatveryeveningyou’reburningthelate-nightoilin
ApowerfulearthquakestruckanareanearthenortherncoastofChileonWednesday.Theearthquakecameadayafteranevenstro
最新回复
(
0
)