首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列微分方程的通解或特解: (Ⅰ)-4y=4x2,y(0)=,y′(0)=2. (Ⅱ)+2y=e-xcosx.
求下列微分方程的通解或特解: (Ⅰ)-4y=4x2,y(0)=,y′(0)=2. (Ⅱ)+2y=e-xcosx.
admin
2016-10-26
58
问题
求下列微分方程的通解或特解:
(Ⅰ)
-4y=4x
2
,y(0)=
,y′(0)=2.
(Ⅱ)
+2y=e
-x
cosx.
选项
答案
(Ⅰ)相应齐次方程的特征方程λ
2
—4=0,特征根λ=±2.零不是特征根,方程有特解 y
*
=ax
2
+bx+c,代入方程得 2a一4(ax
2
+bx+c)=4x
2
. [*] 因此得特解 y=[*] (Ⅱ)相应齐次方程的特征方程λ
2
+3λ+2=0,特征根λ
1
=-1,λ
2
=-2.由于非齐次项是 e
-x
cosx,一1±i不是特征根,所以设非齐次方程有特解 y
*
=e
-x
(acosx+bsinx). 代入原方程比较等式两端e
-x
cosx与e
-x
sinx的系数,可确定出a=-[*],所以非齐次方程的通解 为 y=C
1
e
-x
+C
2
e
-2x
+[*]e
-x
(sinx—cosx),其中C
1
,C
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/p2u4777K
0
考研数学一
相关试题推荐
设λ1,λ2是矩阵A的两个特征值,对应的特征向量分别为α1,α1,则().
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.求AB-1.
设3阶矩阵A的特征值为1,2,2,E为3阶单位矩阵,则丨4A-1-E丨=_________.
设n阶矩阵A非奇异(n≥2),A*是A的伴随矩阵,则
微分方程xyˊ+y=0满足初始条件y(1)=2的特解为________.
设α1,α2,α3是四元非齐次方程组AX=b的三个解向量。且秩r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
设f(x)具有二阶连续导数,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为一全微分方程,求f(x)及此全微分方程的通解.
求微分方程(3x2+2xy-y2)dx+(x2-2xy)dy=0的通解.
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
随机试题
集体合同的时间效力的表现形式有()
下列关于NHL的病理类型中,哪些属于中度恶性?
(2007年第75题)下列属于退行性变的疾病是
下列行为中,属于无效民事行为的有()。
人们常说“教学有法,教无定法”,此话反映了教师劳动的()。(2014·河南)
Wherearetheynow?
Electronicmailhasbecomeanextremelyimportantandpopularmeansofcommunication.Theconvenienceandefficiencyofelec
JudgingbythewildlycheeringaudienceattheorgyofconsumerismthatwasOprahWinfrey’s"UltimateFavouriteThings"show,A
A、Theykeepallthepropertyoftheorganization.B、Theyareresponsibleformostofthebusinessdebts.C、Theytakemorerespon
Postgraduatedilemmas[A]Decidingwhetherornottobecomeapostgraduatecanbeadaunting(令人畏缩的)prospect.Evenifyouaresure
最新回复
(
0
)