首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有微分方程y’一2y=φ(x),其中φ(x)=试求:在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,1)和(1,+∞)内都满足所给方程,且满足条件y(0)=0.
设有微分方程y’一2y=φ(x),其中φ(x)=试求:在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,1)和(1,+∞)内都满足所给方程,且满足条件y(0)=0.
admin
2018-04-15
78
问题
设有微分方程y’一2y=φ(x),其中φ(x)=
试求:在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,1)和(1,+∞)内都满足所给方程,且满足条件y(0)=0.
选项
答案
这是一个一阶线性非齐次微分方程,由于其自由项为分段函数,所以应分段求解,并且为保持其连续性,还应将其粘合在一起. 当x<1时,方程y’一2y=2的两边同乘e
—2x
得(ye
—2x
)’=2e
—2x
,积分得通解y=C
1
e
2x
一1; 而当x>1时,方程y’一2y=0的通解为y=C
2
e
2x
. 为保持其在x=1处的连续性,应使C
1
e
2
—1=C
2
e
2
,即C
2
=C
1
一e
—2
,这说明方程的通解为 [*] 再根据初始条件,即得C
1
=1,即所求特解为[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/p4r4777K
0
考研数学一
相关试题推荐
设二阶常系数线性微分方程y"+αy’+βy=γe2x的一个特解为y=e2x+(1+x)ex,求此方程的通解。
下列二次型中,正定的二次型是()。
已知函数f(x)在区间[a,b]上连续,在(a,b)内f’(x)存在,设连接A(a,f(a)),B(b,f(b))两点的直线交曲线y=f(x)于点C(c,f(c)),且a<c<b,试证:在区间(a,b)内至少存在一点ξ,使f"(ξ)=0。
设二维随机变量(X,Y)的概率密度为求:(Ⅰ)常数k的值;(Ⅱ)(X,Y)的边缘密度fX(x)和fY(y);(Ⅲ)条件密度fX|Y(y|x)和fX|Y(x|y);(Ⅳ)P{X+Y≤1}的值。
设函数f(x)在[a,b]上连续,在(a,b)内可导且f(A)≠f(B),试证明存在η,ξ∈(a,b),使得
设幂级数的收敛半径为()
设曲线L的参数方程为x=φ(t)=t—sint,t=ψ(t)=1一cost(0≤t≤2π).(1)求由L的参数方程确定连续函数y=y(x),并求出它的定义域.(2)求曲线L与x轴所围图形绕y轴旋转一周所成旋转体的体积V。
设g(x)=其中f(x)在x=0处二阶可导,且f(0)=f’(0)=1.(1)a、b为何值时,g(x)在x=0处连续.(2)a、b为何值时,g(x)在x=0处可导.
设矩阵有一个特征值是3.(Ⅰ)求y的值;(Ⅱ)求正交矩阵P,使(AP)TAP为对角矩阵;(Ⅲ)判断矩阵A2是否为正定矩阵,并证明你的结论.
设总体X的概率密度为其中θ>0,θ,μ为未知参数,X1,X2,…,Xn为取自X的简单随机样本.试求θ,μ的最大似然估计量.
随机试题
朝鲜族不吃羊、鸭、鹅,喜食_______。
压力管道的基本安全问题主要是失效问题,而主要失效原因是()方面存在的问题。
英国政府以法令形式正式确立了公开竞争的考试制度,标志着英国公务员制度的正式产生,其时间是()
肝性脑病时氨的毒性作用最主要是
心脏粘液瘤最多发生的心腔是心脏粘液瘤最常附着的部位是
咳嗽中“咳”的特点是
男,40岁。诊断左肾结核,膀胱容量20ml,右肾严重积水伴尿毒症,宜首先行
高压侧电压为35kV的变电所,在变压器门形架构上装设避雷针时,变电所接地电阻(不包括架构基础的接地电阻)不应超过何值?
坚持统计行政处罚公正、公开原则,关键在于要求执法者()。
设数据元素的集合D={1,2,3,4,5},则满足下列关系R的数据结构中为线性结构的是()。
最新回复
(
0
)