首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线L的参数方程为x=φ(t)=t—sin t,t=ψ(t)=1一cos t(0≤t≤2π). (1)求由L的参数方程确定连续函数y=y(x),并求出它的定义域. (2)求曲线L与x轴所围图形绕y轴旋转一周所成旋转体的体积V。
设曲线L的参数方程为x=φ(t)=t—sin t,t=ψ(t)=1一cos t(0≤t≤2π). (1)求由L的参数方程确定连续函数y=y(x),并求出它的定义域. (2)求曲线L与x轴所围图形绕y轴旋转一周所成旋转体的体积V。
admin
2016-01-15
83
问题
设曲线L的参数方程为x=φ(t)=t—sin t,t=ψ(t)=1一cos t(0≤t≤2π).
(1)求由L的参数方程确定连续函数y=y(x),并求出它的定义域.
(2)求曲线L与x轴所围图形绕y轴旋转一周所成旋转体的体积V。
选项
答案
(1)φ’(t)=1一cost>0(t∈(0,2π)),φ’(0)=φ’(2π)=0,又φ(t)在[0,2π]上连续,所以φ(t)在[0,2π]单调递增,值域为[φ(0),φ(2π)]=[0,2π],则x=φ(t)在[0,2π]存在连续的反函数t=t(x),定义域为[0,2π],即y(x)=ψ[t(x)]在[0,2π]上连续. (2)由旋转体的体积公式有: V=2π∫
0
2π
xy(x)dx=2π∫
0
2π
(t一sint)(1一cost)
2
dt =2π∫
0
2π
t(1一cost)
2
dt一2π(订sint(1一cost)
2
dt, 其中 ∫
0
2π
sint(1一cost)
2
dt=∫
—π
π
sint(1一cost)
2
dt=0。 再令 t=2π—s,那么V=2π∫
0
2π
(2π—s)(1一coss)
2
ds=2π∫
0
2π
2π(1—coss)
2
ds—V, 从而 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/VXw4777K
0
考研数学一
相关试题推荐
设直线y=kx与曲线所围平面图形为D1,它们与直线x=1围成平面图形为D2.求SD1+D2.
设f(x)在区间[a,b]上可导,且满足f(b)·cosb=证明至少存在一点ξ∈(a,b),使得f’(ξ)=f(ξ)·tanξ。
λ为何值时,方程组无解,有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.
设α1,α2,β1,β2均是三维向量,且α1,α2线性无关,β1,β2线性无关,证明存在非零向量γ,使得γ既可由α1,α2线性表出,又可由β1,β2线性表出。当α1=时,求出所有的向量γ。
求Z的概率密度fZ(z).
设η1的三个解,求其通解.
设α1,α2,α3是四元非齐次线性方程组AX-b的三个解向量,r(A)=3,且α1+α2=,则方程组AX=b的通解为________.
设.f(x,y)在点(0,0)处是否可微?
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数。求变换后的微分方程满足初始条件y(0)=0,的解。
求八分之一球面x2+y2+z2=R2,x≥0,y≥0,z≥0的边界曲线的质心,设曲线线密度ρ=1.
随机试题
NewEnergySourceSolarenergyforyourhomeiscoming.Itcanhelpyouasasinglehomeowner.Itcanhelpthewholecountr
项目准备阶段的融资咨询主要是从()角度调整落实融资方案。
2008年12月31日,甲公司将一台生产用大型机器设备以110万元的价格销售给乙公司,账面原价为200万元。同时甲公司与乙租赁公司签订了一份融资租赁合同将该设备租回。合同主要条款及其他有关资料如下:(1)租赁标的物:大型机器设备。(2)租赁
让学生感受生命的可贵,养成自尊自信、乐观向上、意志坚强的人生态度。这属于思想品德课程目标中的()。
交响诗《荒山之夜》是()的作品。
遗传素质在人的发展中起()。
问了一个同步令牌和异步令牌
TCP/IP协议集没有规定的内容是______。
______classicmusic,whichfollowsformalEuropeantradition,jazzisaspontaneousandfreeform.
Ourlivesarewoventogether.AsmuchasIenjoymyown【C1】______InolongerimagineIcangetthroughasingledaycompletely【C
最新回复
(
0
)