首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
以下3个命题, ①若数列{un}收敛于A,则其任意子数列{uni}必定收敛于A; ②若单调数列{xn}的某一子数列{xni}收敛于A,则该数列必定收敛于A; ③若数列{x2n}与{x2n+1}都收敛于A,则数列{xn}必定收敛于A. 正确的个数为 (
以下3个命题, ①若数列{un}收敛于A,则其任意子数列{uni}必定收敛于A; ②若单调数列{xn}的某一子数列{xni}收敛于A,则该数列必定收敛于A; ③若数列{x2n}与{x2n+1}都收敛于A,则数列{xn}必定收敛于A. 正确的个数为 (
admin
2015-07-04
97
问题
以下3个命题,
①若数列{u
n
}收敛于A,则其任意子数列{u
ni
}必定收敛于A;
②若单调数列{x
n
}的某一子数列{x
ni
}收敛于A,则该数列必定收敛于A;
③若数列{x
2n
}与{x
2n+1
}都收敛于A,则数列{x
n
}必定收敛于A.
正确的个数为 ( )
选项
A、0
B、1
C、2
D、3
答案
D
解析
对于命题①,由数列收敛的定义可知,若数列{u
n
}收敛于A,则对任意给定的ε>0,存在自然数N,当n>N时,恒有|u
n
一A|<ε.可知当n
i
>N时,恒有|u
ni
一A|<ε.因此数列{u
ni
}也收敛于A,可知命题正确.对于命题②,不妨设数列{x
n
}为单调增加的,即x
1
≤x
2
≤…≤x
n
≤…,其中某一给定子数列{x
ni
}收敛于A,则对任意给定的ε>0,存在自然数N,当n
i
>N时,恒有|x
ni
—A|<ε.由于数列{x
n
}为单调增加的数列,对于任意的n>N,必定存在n
i
≤n≤n
i+1
,有一ε
ni一A≤x
n
一A≤x
ni+1
一A<ε,从而 |x
n
一A|<ε.
可知数列{x
n
}收敛于A.因此命题正确.
对于命题③,因
,由极限的定义可知,对于任意给定的ε>0,必定存在自然数N
1
,N
2
:
当2n>N
1
时,恒有 |x
2n
一A|<ε;
当2n+1>N
2
时,恒有 |x
2n+1
一A|<ε.
取N=max{N
1
,N
2
},则当n>N时,总有|x
n
一A|<ε.因此
.可知命题正确.故答案选择D.
转载请注明原文地址:https://kaotiyun.com/show/pEw4777K
0
考研数学一
相关试题推荐
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
3/2
设f(x)在[a,b]上有定义,M>0且对任意的x,y∈[a,b],有|f(x)-f(y)|≤M|x-y|k.证明:当k>1时,f(x))≡常数.
设f(x)在[a,b]上二阶可导,|f"(x)|≤M,又f(x)在(a,b)内能取到最小值,证明:|f’(a)|+|f’(b)|≤M(b-a).
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3),证明:存在ξ∈(0,3),使得f"(ξ)=2f’(ξ)=0.
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵(k为常数),且AB=O,求线性方程组Ax=0的通解。
设α1,α2,…,αn为n个n维线性无关的向量,A是n阶矩阵.证明:Aα1,Aα2,…,Aαn线性无关的充分必要条件是A可逆.
求一个以y1=tet,y2=sin2t为其两个特解的四阶常系数齐次线性微分方程,并求其通解.
位于上半平面的上凹曲线y=y(x)过点(0,2),在该点处的切线水平,曲线上任意一点(x,y)处的曲率与及1+y’2之积成反比,比例系数为,求y=y(x).
设(X1,X2,…,Xn)为取自正态总体X~N(μ,σT)的样本,则μ2+σ2的矩法估计量为
随机试题
案情:张某——某国企副总经理石某——某投资管理有限公司董事长杨某——张某的朋友姜某——石某公司出纳石某请张某帮助融资,允诺事成后给张某好处,被张某拒绝。石某请出杨某帮忙说服张某,允诺事成后各给张某、杨某400万股的股
对于意识清醒患者的救援顺序为()
Rh血型中,红细胞膜上的Rh凝集原是
强心苷最常见的早期心脏毒性反应是
患者,女,58岁。吞咽困难2月余,现食不得下而复吐出,甚至水饮难下,伴胸膈疼痛,大便坚如羊粪,或吐出物如赤豆汁,形体消瘦,肌肤枯燥,舌质红少津,或带青紫,脉细涩。治法为
陶瓷是陶器和瓷器的总称,而介于两者之间的产品称之为( )。
甲上市公司2013年度的利润分配方案是每10股派发现金股利12元,预计公司股利可以10%的速度稳定增长,股东要求的收益率为12%。于股权登记日,甲公司股票的预期价格为()元。
设计书刊表面整饰加工方案,应注意的事项有()等。
已知直线y=x+2与抛物线y=ax2(a>0)交于A、B两点,O为抛物线的顶点,若满足则a=().
西方国家“三权分立”中的三权是指()。
最新回复
(
0
)