首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(0,+∞)二阶可导且f(x),f’’(x)在(O,+∞)上有界,求证:f’(x)在(0,+∞)上有界.
设f(x)在(0,+∞)二阶可导且f(x),f’’(x)在(O,+∞)上有界,求证:f’(x)在(0,+∞)上有界.
admin
2017-08-18
39
问题
设f(x)在(0,+∞)二阶可导且f(x),f’’(x)在(O,+∞)上有界,求证:f’(x)在(0,+∞)上有界.
选项
答案
按条件,联系f(x),f’’(x)与f’(x)的是带拉格朗日余项的n阶泰勒公式. [*]x>0,h>0有 f(x+h)=f(x)+f’(x)h+[*]f’’(ξ)h
2
, 其中ξ∈(x,x+h).特别是,取h=1,ξ∈(x,x+1),有 f(x+1)=f(x)+f’(x)+[*]f’’(ξ),即f’(x)=f(x+1)—f(x)—[*]f’’(ξ) 由题设,|f(x)|≤M
0
,|f’’(x)|≤M
2
([*]x∈(0,+∞)),M
0
,M
2
为常数,于是有 [*] 即f’(x)在(0,+∞)上有界.
解析
转载请注明原文地址:https://kaotiyun.com/show/pIr4777K
0
考研数学一
相关试题推荐
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα一2A2α.证明:矩阵B=(α,Aα,A4α)可逆;
设随机变量X的概率密度为f(x),则随机变量|X|的概率密度f1(x)为
求幂级数的收敛域及和函数.
设f(x)在[0,1]连续,在(0,1)二阶可导且f(0)=/(1)=0,f’’(x)
设随机变量X在[0,2]上服从均匀分布,y服从参数λ=2的指数分布,且X,Y相互独立.求关于a的方程a2+Xa+Y=0有实根的概率(答案可用符号表示,不必计算出具体值).
设A是n阶正定矩阵,x是n维列向量,E是n阶单位阵,记计算PW;
设总体X的概率密度为其中θ,φ(0<θ,φ<1)是未知参数,X1,X2,…,Xn,是取自总体X的简单随机样本,记N为样本值x1,x2,…,xn中小于1的个数,求θ,φ的最大似然估计.
设随机变量X服从参数为1的指数分布,随机变量Y服从,且X与Y相互独立,令Z=X—Y,记fZ(z)为随机变量函数Z的概率密度函数,求E|X—Y|,D|X—Y|.
(Ⅰ)求累次积分(Ⅱ)设连续函数f(x)满足f(x)=1+,求I=
随机试题
[*]
正常人尿常规检查,不可能出现下列哪项结果
某企业只生产一种产品,按0.6的平滑系数预测4月份的销售量为18500件。该企业1~4月份的实际销售量与总成本资料如下:要求:(1)采用高低点法进行成本性态分析。(2)采用平滑指数法预测5月份的产销量。(3)根据成
甲公司采用出包方式交付承建商建设一条生产线。生产线建设工程于20×8年1月1日开工,至20×8年12月31日尚未完工。专门为该生产线建设筹集资金的情况如下:(1)20×8年1月1日,按每张98元的价格折价发行分期付息、到期还本的公司债券30万张
某镇为节省耕地、繁荣经济、加快小城镇建没,经镇政府研究决定,在紧靠老镇繁华地带的河边,改河道围沙滩100亩,进行商贸区扑发建设。由于土地造价低,又紧靠繁华地带,投资者热情很高,很快就引进了私营业者60多户到此区安家落户从事商贸经营活动。此商贸开发区启动营运
制发公文的目的和要求,一般是由()确定的。
使用VC6打开考生文件夹下的源程序文件modi2.cpp。完成函数fun(char*str,char*s)空出部分。函数fun(char*str,char*s)的功能是:将在字符串str中下标为偶数位置上的字符,紧随其后重复出现一次,放在一个新串s中,s
AHowtoUseaPaintingKnife使用画刀的方法Paintingwithaknifeisabitlikeputtingbutteronbreadandproducesquitea(1)resu
Inmanycountries,whenpeoplegivetheirname,theyrefertothemselvesusingtheirlastnameorfamilyname.IntheUnitedSt
Wedon’tknowwhentheroadwillbe(wide)______.
最新回复
(
0
)