首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶实对称矩阵A满足trA=-6,AB=C,其中 求k的值与矩阵A.
已知3阶实对称矩阵A满足trA=-6,AB=C,其中 求k的值与矩阵A.
admin
2020-04-30
27
问题
已知3阶实对称矩阵A满足trA=-6,AB=C,其中
求k的值与矩阵A.
选项
答案
由题设AB=C可知A(1,2,1)
T
=0,从而λ
1
=0为A的特征值,α
1
=(1,2,1)
T
为相应的特征向量; 又A(1,k,1)
T
=(-12,-12k,-12)
T
=-12(1,k,1)
T
,由此可知λ
2
=-12为矩阵A的特征值,α
2
=(1,k,1)
T
为相应的特征向量.因为λ
1
+λ
2
+λ
3
=trA=-6,所以λ
3
=6. 又因为实对称矩阵属于不同特征值的特征向量正交,故有α
T
1
α
2
=0,即(1,2,1)(1,k,1)
T
=0,解得k=-1. 设A的属于λ
3
=6的特征向量为α
3
=(x
1
,x
2
,x
3
)
T
,则显然α
T
1
α
3
=0,α
T
2
α
3
=0,即得到方程组: [*] 求得基础解系α
3
=(-1,0,1)
T
,即为A的属于λ
3
=6的特征向量. 由Aα
1
=0α
1
,Aα
2
=-12α
2
,Aα
3
=6α
3
,得 A(α
1
,α
2
,α
3
)=(0,-12α
2
,6α
3
), 即 [*] 故 [*]
解析
本题考查相似对角化的逆问题.用特征值与特征向量的定义Ax=λx,求特征值与特征向量.即若Ax=0有非零解x
0
.知0是A的特征值,x
0
是A的关于0特征值对应的特征向量,若Ax=λx,则λ是A的特征值,非零列向量x是A的关于特征值λ的特征向量.还可用λ
1
+λ
2
+λ
3
=trA求特征值.
转载请注明原文地址:https://kaotiyun.com/show/pIv4777K
0
考研数学一
相关试题推荐
向量组α1,α2,…,αs线性无关的充要条件是().
设多项式f(x)=,则x4的系数和常数项分别为()
在下列微分方程中,以y=c1ex+c2cos2x+C3sin2x(c1,c2,c3为任意常数)为通解的是().
设α=(6,-1,1)T与α=(-7,4,2)T是线性方程组的两个解,那么此方程组的通解是________.
矩阵An×n的特征多项式的常数项为________.
设A是4×3阶矩阵且r(A)=2,B=,则r(AB)=________.
设A是4×3矩阵,且A的秩r(A)=2,而B=,则r(AB)=______。
已知X~,且n维向量α1,α2,α3线性无关,则α1+α2,α2+2α3,Xα3+Yα1线性相关的概率为______。
设α,β为三维非零列向量,(α,β)=3,A=αβT,则A的特征值为_________.
向量组α1,α2,…,αm线性无关的充分必要条件是().
随机试题
胰的描述,不正确的是
习惯性流产定义为
检查:双眼睑结膜高度充血,耳前淋巴结肿大,结膜分泌物涂片见白细胞内大量革兰染色阴性双球菌。患者最可能诊断为
A.延髓下部的薄束核B.丘脑外侧核C.延髓下部的楔束核D.脊髓后角细胞E.后根神经节
A.舌尖B.舌中C.舌边D.舌底E.舌根心在舌分属部位是
开放性气胸患者呼吸困难最主要的急救措施是
关于仲裁裁决的撤销,根据我国现行法律,下列哪一选项是正确的?()
背景资料:某公司承建一座市政桥梁工程,桥梁上部结构为9孔30m后张法预应力混凝土T梁,桥宽横断面布置T梁12片,T梁支座中心线距梁端600mm,T梁横截面(单位:mm)如下图所示。项目部进场后,拟在桥位线路上现有城市次干道旁租地建设T
某甲投保了家庭财产保险基本险,保险金额为20万元,其中房屋及室内装潢的保险金额为10万元。保险合同约定出险时将按照保险财产的实际损失及当时的保障比例进行赔偿。某甲的房屋在保险期限内发生火灾,造成房屋及其室内装潢部分损失19000元。其中出险时房屋及其室内装
每个人都有自己的乐趣。有一位大师生前曾说过:“在工作和基本生活之外,我唯一做的事情就是看书。”可见()。
最新回复
(
0
)