首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2010年] 设,已知线性方程组AX=b存在两个不同的解.(I)求λ,a;(Ⅱ)求方程组AX=b的通解.
[2010年] 设,已知线性方程组AX=b存在两个不同的解.(I)求λ,a;(Ⅱ)求方程组AX=b的通解.
admin
2019-08-01
136
问题
[2010年] 设
,已知线性方程组AX=b存在两个不同的解.(I)求λ,a;(Ⅱ)求方程组AX=b的通解.
选项
答案
先利用题设方程组有解且不唯一的性质得到秩([*])=秩(A)<3,求得λ,a. (Ⅰ)解一 因AX—b有两个不同的解,则AX=0有非零解,因而AX=b有无穷多组解,故秩([*])=秩(A)<3,于是∣A∣=0,由 ∣A∣=[*]=(λ一1)
2
(λ+1)=0, 解得λ=1或λ=一1.当λ=1时,秩(A)一1≠秩([*])=2,AX=b无解,故λ≠1,因而λ=一1. 因[*] 由秩(A)=秩([*])=2,得到a+2=0,即a=一2. 解二 由题设知,秩(A)=秩([A:b])<3,对增广矩阵进行初等行变换得到 [*] 当λ=1时,[A:b]一[*].此时秩(A)=2≠秩([A:b]), 方程组无解,故λ≠1. 当λ=一1时,[A:b]一[*].为使秩(A)=秩([A:b])=2<3,必有 a+2=0, 即 a=一2. (Ⅱ)因A→[*] 由基础解系的简便求法即得AX=0的基础解系只含一个解向量α=[1,0,1]
T
,AX=b的一个特解为β=[3/2,-1/2,0]
T
,因而AX=b的通解为 X=cα+β=c[1,0,1]
T
+[3/2,一1/2,0]
T
,其中c为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/pJN4777K
0
考研数学二
相关试题推荐
设f(x)为连续函数,计算+yf(x2+y2)]dxdy,其中D是由y=x2,y=1,x=-1围成的区域.
已知a,b,c不全为零,证明方程组只有零解.
已知是f(x)的一个原函数,求∫3xf’(x)dx.
(Ⅰ)设ex+y=y确定y=y(x),求y’,y’’;(Ⅱ)设函数y=f(x+y),其中f具有二阶导数,且f’≠1,求
求曲线гx=a(t-sint),y=a(1-cost)(0≤t≤2π)及y=0所围图形绕x轴旋转一周所得曲面的面积S.
求I=,D由曲线x2+y2=2x+2y-1所围成.
设f(x)为连续正值函数,x∈[0,+∞),若平面区域Rt={(x,y)|0≤x≤t,0≤y≤f(x)}(t>0)的形心纵坐标等于曲线y=f(x)在[0,t]上对应的曲边梯形面积与之和,求f(x).
(1)设0<x<+∞,证明存在η,0<η<1,使(2)求出(1)中η关于x的具体函数表达式η=η(x),并求出当0<x<+∞时,函数η(x)的值域.
(02年)设函数f(x)在x=0的某邻域内具有二阶连续导数,且f(0)≠0,f’(0)≠0,f"(0)≠0.证明:存在惟一的一组实数λ1,λ2,λ3,使得当h→0时,λ1f(h)+λ2f(2h)+λ3f(3h)一f(0)是比h2高阶的无穷小.
用配方法化下列二次型为标准形:f(x1,x2,x3)=2x1x2+2x1x3+6x2x3
随机试题
-e-x
正常小儿指纹多数应该是
关于套利交易,以下说法中,正确的有()。
协议平台上进行的()暂不纳入交易所即时行情和指数的计算,成交量在协议平台交易结束后计入当日该证券成交总量。
外国投资者以股权并购境内公司,境内公司取得无加注的外商投资企业批准证书、外汇登记证之前,()。
设Sn是等比数列{an}的前n项和,且满足6S7=a8+6,6S6=a7+6,则此数列的公比为__________.
深圳义工小刘在一次抓捕逃犯行动中给予民警协助和支持,小刘也因此受重伤住院。公安局领导和媒体到医院看望慰问小刘,媒体问小刘有什么愿望?小刘说他一辈子的愿望就是当一名警察,希望康复后能被组织接纳,当一名除暴安良的人民警察,实现他报效祖国的理想。根据《人民警察法
法律关系按照法律关系主体的法律地位是否平等可分为()。
标准ASCⅡ码用7位二进制位表示一个字符的编码,其不同的编码共有()。
Americahasnowadoptedmore______European-styleinspectionsystems,andtheincidenceoffoodpoisoningisfalling.(厦门大学2014年试
最新回复
(
0
)