首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知a,b,c不全为零,证明方程组只有零解.
已知a,b,c不全为零,证明方程组只有零解.
admin
2018-06-27
61
问题
已知a,b,c不全为零,证明方程组
只有零解.
选项
答案
因为系数行列式 [*] =-(a
2
+bv+c
2
)≠0, 所以齐次方程组只有零解.
解析
转载请注明原文地址:https://kaotiyun.com/show/Wlk4777K
0
考研数学二
相关试题推荐
确定常数a,使向量组α1=(1,1,a),α2=(1,a,1),α3一(a,1,1)可由向量组β1=(1,1,a)。β2=(-2,a,4),β2=(-2,a,a)线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3.(1)证明α1,α2,α3线性无关;(2)令P=(α1,α2,α3),求P-1AP.
设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f’(x)>0.若极限存在,证明:(1)在(a,b)内f(x)>0;(2)在(a,b)内存在点ξ,使;(3)在(a,b)内存在与(2)中ξ相异的点η,使f’(η)(b2-a2)=。
设函数f(x)在[0,π]上连续,且|f(x)dx=0,|f(x)cosxdx=0,试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ0)=0.
设α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b—2,a+2b)T,β=(1,3,-3)T,试讨论当a、b为何值时,(1)β不能由α1,α2,α3线性表示;(2)β可由α1,α2,α3唯一地线性表示,并求出表示式;
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,α)T,)如果齐次线性方程组Ax=0与BBx=0有非零公共解
设ξ1=[1,一2,3,2]T,ξ2=[2,0,5,一2]T是齐次线性方程组Ax=0的基础解系,则下列向量中是齐次线性方程组Ax=0的解向量的是()
已知η是Ax=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组Ax=0的基础解系,证明:η,η+ξ1,η+ξ2,…,η+ξn-r是Ax=b的n一r+1个线性无关解;
随机试题
呋噻米的利尿作用是由于
如下哪项是治疗十二指肠溃疡之胃阴不足证突发首选
初孕妇,妊娠39周,剧烈持续腹痛4小时入院。贫血貌,血压130/80mmHg,脉搏120次/分,子宫硬,不松弛,有局限性压痛,胎位不清,胎心110次/分,阴道少量流血,肛查宫口未开。
关于电雷管起爆的缺点的说法,正确的有()。
稷下学宫是世界上第一所由官方举办、私人主持的特殊形式的高等学府。稷下学宫在全盛时期容纳了当时几乎各个学派贤士近千人,如孟子、申不害、淳于髡、荀子等。稷下学宫()。
我国运载发射第一颗人造卫星的“长征”一号火箭是一枚四级火箭。()
2011年中国对匈牙利出口前10大类商品中,出口额最低的是:
两个维护是指坚决维护习近平总书记党中央核心,全党的核心地位,坚决维护党中央权威和集中统一领导。()
包含Swing构件的Applet(小应用程序)应该是【】类的子类。
Asshewalkedroundthehugedepartmentstore,EdithreflectedhowdifficultitwastochooseasuitableChristmaspresentforh
最新回复
(
0
)