首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(02年)设函数f(x)在x=0的某邻域内具有二阶连续导数,且f(0)≠0,f’(0)≠0,f"(0)≠0.证明:存在惟一的一组实数λ1,λ2,λ3,使得当h→0时,λ1f(h)+λ2f(2h)+λ3f(3h)一f(0)是比h2高阶的无穷小.
(02年)设函数f(x)在x=0的某邻域内具有二阶连续导数,且f(0)≠0,f’(0)≠0,f"(0)≠0.证明:存在惟一的一组实数λ1,λ2,λ3,使得当h→0时,λ1f(h)+λ2f(2h)+λ3f(3h)一f(0)是比h2高阶的无穷小.
admin
2018-07-27
94
问题
(02年)设函数f(x)在x=0的某邻域内具有二阶连续导数,且f(0)≠0,f’(0)≠0,f"(0)≠0.证明:存在惟一的一组实数λ
1
,λ
2
,λ
3
,使得当h→0时,λ
1
f(h)+λ
2
f(2h)+λ
3
f(3h)一f(0)是比h
2
高阶的无穷小.
选项
答案
只需证存在惟一的一组实数λ
1
,λ
2
,λ
3
,使 [*] 由题设和洛必达法则,从 [*] 知,λ
1
,λ
2
,λ
3
应满足方程组 [*] 因为系数行列式 [*] 所以上述方程组的解存在且惟一,即存在惟一的一组实数λ
1
,λ
2
,λ
3
,使得当h→0时,λ
1
f(h)+λ
2
f(2h)+λ
3
f(3h)一f(0)是比h
2
高阶的无穷小.
解析
转载请注明原文地址:https://kaotiyun.com/show/uoj4777K
0
考研数学二
相关试题推荐
设an>0(n=l,2,…),Sn=a1+a2+…+an,则数列{Sn}有界是数列{an}收敛的
1
设f(x)和φ(x)在(-∞,+∞)上有定义,f(x)为连续函数,且,(φ)≠0,f(x)有间断点,则
设向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关,问:(I)α1能否由α2,α3线性表出?证明你的结论.(Ⅱ)α4能否由α1,α2,α3线性表出?证明你的结论.
设Y=ex(C1sinx+C1cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_______.
非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则
设则A,B的关系为().
按第一行展开[*]得到递推公式D5一D4=-x(D4-D3)一…=-x3(D2-D1).由于[*]=1一x+x2,D1=1一x,于是得[*]容易推出D5=一x5+x4一x2+D2=一x5+x4一x3+x2一x+1.
已知非齐次线性方程组有3个线性无关的解.证明方程组系数矩阵A的秩r(A)=2;
随机试题
中共七届二中全会决议分析了新民主主义社会的经济状况和社会矛盾。其中,中国社会主要的经济成分有()三种。
________是政府运行过程的核心部分,是对社会公共事务以及机关内部事务进行有效管理的保证。
患者平素头晕耳鸣,腰酸,突然发生口眼歪斜,言语不利,手指喟动。甚或半身不遂,舌质红,苔腻,脉弦细数。治当选用
由于发包人或工程师指令承包人加快施工进度,缩短工期,引起承包人的人力、物力、财力的额外开支,承包人可以提出()索赔。
下面哪项不是选择化学教学媒体时应该遵循的原则?()
办公室更改电话号码,可用()公布周知。
根据《物权法》的规定,下列有关用益物权的表述,正确的是
Inthe21stcenturythere’snodoubtthatfrighteningnewinfectiousdiseaseswillappear.Todaynewvirusesarecomingoutofn
TheCommissionisexpectedtoproposeallowingpeopletochoosewhichlegaljurisdictiontheywouldcomeunder,basedontheir【L
Whatwasthemangoingtodoaccordingtotheconversation?
最新回复
(
0
)