首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(91年)设函数f(x)在(一∞,+∞)内满足f(x)=f(x一π)+sinx,且f(x)=x,x∈[0,π),计算∫π3πf(x)dx.
(91年)设函数f(x)在(一∞,+∞)内满足f(x)=f(x一π)+sinx,且f(x)=x,x∈[0,π),计算∫π3πf(x)dx.
admin
2019-04-17
64
问题
(91年)设函数f(x)在(一∞,+∞)内满足f(x)=f(x一π)+sinx,且f(x)=x,x∈[0,π),计算∫
π
3π
f(x)dx.
选项
答案
当x∈[π,2π)时,x一π∈[0,π),由f在[0,π)上的定义知 f(x一π)=x一π 故 f(x)=f(x一x)+sinx=x一π+sinx, x∈[π,2π) 当x∈[2π,3π)时,x一π∈[π,2π) f(x一π)=[(x一π)一π]+sin(x一π)=x一2π一sinx 故 f(x)=f(x一π)+sinx =x一2π—sinx+sinx=x一2π, x∈[2π,3π) 则 ∫
π
3π
f(x)dx=∫
π
2π
f(x)dx+∫
2π
3π
f(x)dx =∫
π
2π
(x一π+sinx)dx+∫
2π
3π
(x一2π)dx=π
2
一2
解析
转载请注明原文地址:https://kaotiyun.com/show/pJV4777K
0
考研数学二
相关试题推荐
设f(x)在[0,a](a>0)上非负、二阶可导,且f(0)=0,为y=f(x),y=0,x=a围成区域的形心,证明:
证明:r(A+B)≤r(A)+r(B).
已知对于n阶方阵A,存在自然数k,使得Ak=O.试证明:矩阵E一A可逆,并写出其逆矩阵的表达式(E为n阶单位阵).
设A是主对角元为0的四阶实对称阵,E是四阶单位阵,B=且E+AB是不可逆的对称阵,求A.
求极限:
设4阶矩阵A=(α,γ1,γ2,γ3),B=(β,γ1,γ2,γ3),|A|=2,|B|=3,求|A+B|.
设A=,A*是A的伴随矩阵,则A*x=0的通解是_________.
设X1,X2,…,Xn(n>1)相互独立同分布,概率密度为f(x)=2x-3,x≥1,i=1,2,…,则有()
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又B=且AB=O,求方程组AX=0的通解.
设y=f(x)是区间[0,1]上的任一非负连续函数。(Ⅰ)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积。(Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>-2
随机试题
某酒厂生产的“天宝”牌葡萄酒,其包装正面和两侧的图形、字体、色彩均与已经在我国注册的驰名商标“万宝路”牌卷烟盒相近似,其封口上印的标识也与“万宝路”卷烟封口相近似。该厂所在地的:工商行政管理局发现后,责令该厂停止销售这种葡萄酒,收缴其全部外包装,并处以罚款
Thedrunkmanwasrunningfromsidetosideinthecrowdandheknockedinto______.
构成腹外疝疝环的结构是
A.上中切牙B.上侧切牙C.上尖牙D.下中切牙E.下尖牙全口义齿排牙颈部向唇侧突出,且颈部稍向远中,牙尖在平面上的人工牙是
(2008年)在一定温度下,某反应的标准平衡常数Kθ的数值()。
张某有200万元资金,打算在烟台投资设立一家注册资本为300万元左右的餐饮企业。如张某与王某、李某、赵某共同出资设立了一家特殊普通合伙企业。在执业过程中,张某因重大过失给合伙企业造成了17万元的债务,王某与李某二人因轻微过失给合伙企业造成了20万元的债
注册会计师实施的实质性测试,其性质、时间和范围的确定,最终取决于根据固有风险和控制风险的综合水平所确定的可接受的检查风险。如果可接受的检查风险较高,则实质性测试的性质应以余额测试为主,时间应以期末审计和期后审计为主。( )
下列事件的最佳逻辑排列顺序是()。①司机们接受了新型汽油②某种汽油对大气污染严重③用户认为价格太贵,不愿使用④厂家采用新技术降低成本⑤专家研制出某种新型低污染汽油
窗体有命令按钮Commandl和文本框Textl,对应的事件代码如下:PrivateSubCommandl_Click()Fori=1To4x=3Forj=1To3Fork=1To2
Accordingtothetalk,theownerofabikehasto______.
最新回复
(
0
)