首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二维非零向量X不是二阶方阵A的特征向量. (1)证明X,AX线性无关; (2)若A2X+AX-6X=0,求A的特征值,并讨论A可否对角化.
已知二维非零向量X不是二阶方阵A的特征向量. (1)证明X,AX线性无关; (2)若A2X+AX-6X=0,求A的特征值,并讨论A可否对角化.
admin
2019-08-11
72
问题
已知二维非零向量X不是二阶方阵A的特征向量.
(1)证明X,AX线性无关;
(2)若A
2
X+AX-6X=0,求A的特征值,并讨论A可否对角化.
选项
答案
(1)用反证法证之.若X与AX线性相关,则存在不全为零的常数k
1
,k
2
使k
1
X+k
2
AX=0.为方便计,设k
2
≠0,则AX=[*]X,于是X为A的特征向量,与题设矛盾. (2)由题设有 A
2
X+AX一6X=(A+3E)(A一2E)X=0. ① 下证A一2E,A+3E必不可逆,即|A一2E|=|A+3E|=0. 事实上,如A+3E可逆,则由方程①得到 (A一2E)X=AX一2X=0, 即 AX=2X. 这说明X为A的特征向量,故 |A+3E|=0. ② 同法可证A-2E也不可逆,即 |A一2E|=0. ③ 由式②、式③即知,2与一3为A的特征值,所以A能与对角阵相似.
解析
A为抽象矩阵,则AX,X均为抽象的向量组.讨论其特征值、特征向量的有关问题常用有关定义及其性质证明.也常用反证法证之.
转载请注明原文地址:https://kaotiyun.com/show/1MJ4777K
0
考研数学三
相关试题推荐
两名射手各向自己的靶独立射击,直到有一次命中时该射手才(立即)停止射击.如果第i名射手每次命中概率为pi(0<pi<1,i=1,2),则两射手均停止射击时脱靶(未命中)总数的数学期望为_________.
设0<x1<x2,f(x)在[x1,x2]可导,证明:在(x1,x2)内至少存在一个c,使得=f(c)一f’(c).
设a>0,f(x)在(一∞,+∞)上有连续导数,求极限∫-aa[f(t+a)一f(t一a)]dt.
设f(t)=∫01ln,则f(t)在t=0处
设X1,X2,…,Xn是来自总体X的简单随机样本,其均值和方差分别为与S2,且X~B(1,p),0<p<1.证明:B=.
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是:f(a,b)=0,f’x(a,b)=0,且当
设z=f(x,y)=则f(x,y)在点(0,0)处
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=,其中A*是A的伴随矩阵,E为n阶单位矩阵.证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
曲线y=(x+4sinx)/(5x-2cosx)的水平渐近线方程为_____.
曲线y=的渐近线有().
随机试题
硫喷妥钠的禁忌证是
上唇周围和鼻部疖的危险可引起
第三代头孢菌素(头孢噻肟)的特点是
有关新生儿溶血症的论述,不正确的是
非法经营罪的犯罪客观方面包括( )。
沥青路面试验路铺筑属于()阶段。
采用股利增长模型估计普通股成本时,对于模型中平均增长率的确定,主要方法有()。
Z注册会计师验证被审计单位应付账款是否真实存在,可通过( )程序测试。函证应付账款时,一般选择金额较大的债权人,以及那些金额不大、甚至为零的债权人作为函证的对象,其原因是( )。
唐代陆羽被奉为______,他最著名的专著是______。
设=∫-∞ate′dt,则a=________.
最新回复
(
0
)