首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二维非零向量X不是二阶方阵A的特征向量. (1)证明X,AX线性无关; (2)若A2X+AX-6X=0,求A的特征值,并讨论A可否对角化.
已知二维非零向量X不是二阶方阵A的特征向量. (1)证明X,AX线性无关; (2)若A2X+AX-6X=0,求A的特征值,并讨论A可否对角化.
admin
2019-08-11
78
问题
已知二维非零向量X不是二阶方阵A的特征向量.
(1)证明X,AX线性无关;
(2)若A
2
X+AX-6X=0,求A的特征值,并讨论A可否对角化.
选项
答案
(1)用反证法证之.若X与AX线性相关,则存在不全为零的常数k
1
,k
2
使k
1
X+k
2
AX=0.为方便计,设k
2
≠0,则AX=[*]X,于是X为A的特征向量,与题设矛盾. (2)由题设有 A
2
X+AX一6X=(A+3E)(A一2E)X=0. ① 下证A一2E,A+3E必不可逆,即|A一2E|=|A+3E|=0. 事实上,如A+3E可逆,则由方程①得到 (A一2E)X=AX一2X=0, 即 AX=2X. 这说明X为A的特征向量,故 |A+3E|=0. ② 同法可证A-2E也不可逆,即 |A一2E|=0. ③ 由式②、式③即知,2与一3为A的特征值,所以A能与对角阵相似.
解析
A为抽象矩阵,则AX,X均为抽象的向量组.讨论其特征值、特征向量的有关问题常用有关定义及其性质证明.也常用反证法证之.
转载请注明原文地址:https://kaotiyun.com/show/1MJ4777K
0
考研数学三
相关试题推荐
设某网络服务器首次失效时间服从E(λ),现随机购得4台,求下列事件的概率:(Ⅰ)事件A:至少有一台的寿命(首次失效时间)等于此类服务器期望寿命;(Ⅱ)事件B:有且仅有一台寿命小于此类服务器期望寿命.
设f(x)在[A,B]上连续,A<a<b<B,求证:
求函数f(x)=∫exdt在区间[e,e2]上的最大值.
设x=rcosθ,y=rsinθ,将如下直角坐标系中的累次积分化为极坐标系中的累次积分.
已知A=可对角化,求可逆矩阵P及对角矩阵.
设随机变量X和Y的联合密度为试求事件“X大于Y”的概率P{X>Y};
求微分方程的通解.
已知函数y=e2x+(x+1)ex是二阶常系数线性非齐次方程的解.求方程通解及方程.
[*]因此原式为[*]型.再由(*)式,用等价无穷小替换,得[*]
曲线y=(x+4sinx)/(5x-2cosx)的水平渐近线方程为_____.
随机试题
壁细胞分泌的物质有
A.累及部位多,症状出现的频繁,对患儿情绪、心理影响较大B.症状持续时间较长,但对患者社会功能影响相对较小C.预后良好,大多数患儿症状自行好转D.大多数患者症状持续终生E.病情严重,部分患儿会过早夭折慢性运动或发声抽动障碍
下列哪项不应作会阴切开
对历史文化保护区内重点保护地段的建设控制指标和规定,是城市()内容。
根据《建设工程工程量清单计价规范》,一般情况下,编制招标控制价采用的材料优先选用()。
税收能否转嫁及转嫁的程度,受()等因素的影响与制约。
某地大雪,一小区水管、电线被冻坏,居民到居委会闹事,你是居委会负责人。你怎么办?
将200块糖分给甲、乙、丙三人,甲的糖比乙的2倍还要多,乙的糖比丙的3倍还要多,甲至少有多少块糖?
根据我国现行宪法和法律,以下可以具有中国国籍的是()。
有些外科手术需要一种特殊类型的线带,使外科伤口缝合达到10天,这是外科伤口需要线带的最长时间。D型带是这种线带的一个新品种。D型带的销售人员声称D型带将会提高治疗功效,因为D型带的黏附时间是目前使用的线带的两倍长。以下哪项如果成立,最能说明D型带销售
最新回复
(
0
)