首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22一2y32,且A*+2E的非零特征值对应的特征向量为α1=,求此二次型.
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22一2y32,且A*+2E的非零特征值对应的特征向量为α1=,求此二次型.
admin
2017-08-31
41
问题
三元二次型f=X
T
AX经过正交变换化为标准形f=y
1
2
+y
2
2
一2y
3
2
,且A
*
+2E的非零特征值对应的特征向量为α
1
=
,求此二次型.
选项
答案
因为f=X
T
AX经过正交变换后的标准形为f=y
1
2
+y
2
2
-2y
3
2
,所以矩阵A的特征值为λ
1
=λ
2
=1,λ
3
=一2.由|A|=λ
1
λ
2
λ
3
=一2得A
*
的特征值为μ
1
=μ
2
=一2,μ
3
=1,从而A
*
+2E的特征值为0,0,3,即α
1
为A
*
+2E的属于特征值3的特征向量,故也为A的属于特征值λ
3
=一2的特征向量. 令A的属于特征值λ
1
=λ
2
=1的特征向量为α=[*],因为A为实对称矩阵,所以有α
1
T
α=0,即x
1
+x
3
=0故矩阵A的属于λ
1
=λ
2
=1的特征向量为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/pPr4777K
0
考研数学一
相关试题推荐
[*]
设A为三阶矩阵,令将A的第一、二两行对调,再将A的第三列的2倍加到第二列成矩阵B,则B等于().
设un(x)满足un’(x)=un(x)+xn-1ex(n=1,2,…),且求级数的和函数.
(Ⅰ)已知由参数方程确定了可导函数y=f(x),求证:x=0是y=f(x)的极大值点.(Ⅱ)设F(x,y)在(x0,y0)某邻域有连续的二阶偏导数,且F(x0,y0)=(x0,y0=0,(x0,y0>0,(x0,y0)
已知A是3阶矩阵,α1,α2,α3是3维线性无关列向量,且Aα1=3α1+3α2-2α3,Aα2=-α2,Aα3=8α1+6α2-5α3.(Ⅰ)写出与A相似的矩阵B;(Ⅱ)求A的特征值和特征向量;(Ⅲ)求秩r(A+E).
设函数f(x,y)在区域D:x2+y2≤1上有二阶连续偏导数,且又Cr是以原点为心,半径为r的圆周,取逆时针方向,求
函数u=xyz2在条件x2+y2+z2=4(x>0,y>0,z>O)下的最大值是_______.
已知α1=(1,3,5,-1)T,α2=(2,7,a,4)T,α3=(5,17,-1,7)T,(Ⅰ)若α1,α2,α3线性相关,求a的值;(Ⅱ)当a=3时,求与α1,α2,α3都正交的非零向量α4;(Ⅲ)当a=3时,证明α1,
本题考查定积分的性质和定积分的计算,由于是对称区间上的定积分,一般利用奇函数,偶函数在对称区间上积分性质简化计算,本题还用到了华里士公式.[*]
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.写出f(x)在x=c处带拉格朗日型余项的一阶泰勒公式;
随机试题
公文处理工作在机关工作中起着重要作用,主要体现在()
细胞间电突触传递的特点是
骨髓检查中,通常用油镜来观察的是
异位妊娠未破损期,治疗宜选
在国民经济评价中,土地机会成本应按照项目占用土地而使国家为此损失的该土地“最好可行替代用途”的()计算。
某市110报警服务台接到如下报警电话,其中属于应予受理的报警并可以下达处警指令的有()。
在经济全球化的背景下,知识产权越来越成为市场竞争的有力武器.成为跨国公司在全球_________市场、_________更大利润的重要手段,也正在成为跨国公司_________其他企业的重要手段。填入画横线部分最恰当的一项是:
经过30年的对外开放,我国已经形成了全方位、多层次、宽领域的对外开放格局,这里的宽领域,是指()
HostilitytoGypsieshasexistedalmostfromthetimetheyfirstappearedinEuropeinthe14thcentury.TheoriginsoftheGyps
A、Hedoesn’tlikeitshistoricalatmosphere.B、Hethinksthenightlifethereistoonoisy.C、Hedoesn’tknowmuchaboutit.D、He
最新回复
(
0
)