首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 (Ⅰ)当a,b为何值时,β不可由α1,α2,α3线性表示; (Ⅱ)当a,b为何值时,β可由α1,α2,α3线性表示,写出表达式.
设 (Ⅰ)当a,b为何值时,β不可由α1,α2,α3线性表示; (Ⅱ)当a,b为何值时,β可由α1,α2,α3线性表示,写出表达式.
admin
2014-11-26
63
问题
设
(Ⅰ)当a,b为何值时,β不可由α
1
,α
2
,α
3
线性表示;
(Ⅱ)当a,b为何值时,β可由α
1
,α
2
,α
3
线性表示,写出表达式.
选项
答案
[*] 1)当a≠一6,a+2b一4≠0时,因为r(A)≠[*],所以β不可由α
1
,α
2
,α
3
线性表示; 2)当a≠一6,a+2b一4=0时,[*]β可由α
1
,α
2
,α
3
唯一线性表示,表达式为β=2α
1
一α
2
+0α
3
; 当a=一6时,[*]当a=一6,b≠5时,由[*]β可由α
1
,α
2
,α
3
唯一线性表示,表达式为β=6α
1
+1α
2
+2α
3
; 当a=一6,b=5时,由[*]β可由α
1
,α
2
,α
3
线性表示,表达式为β=(2k+2)α
1
+(k一1)α
2
+kα
3
,其中k为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/ol54777K
0
考研数学一
相关试题推荐
设f(x)二阶可导,f"(x)<0,f’(0)≤,f(0)=0,f(1)=,并设0<x1<1,且xn+1=f(xn),n=1,2,….证明在(0,+∞)内单调减少。
设f(x)在[0,+∞)内连续,且f(x)>0,证明函数F(x)=在(0,+∞)内单调增加。
设向量组α1=[1,1,1,1]T,α2=[1,-1,2,3]T,α3=[1,1,4,9]T,α4=[1,-1,8,27]T,证明:任意一个4维列向量均可以被该向量组线性表示,且表达式唯一.
已知4阶方阵A=、[a1,a2,a3,a4],a1,a2,a3,a4均为4维列向量,其中a1,a2线性无关,若β=a1+2a2-a3=a1+a2+a3+a4=a1+3a2+a3+2a4,则Ax=β的通解为________.
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵.证明:BTAB为正定矩阵的充分必要条件是r(B)=n.
设A,B均为n阶矩阵,且AB=A+B,则下列命题中:①若A可逆,则B可逆;②若A+B可逆,则B可逆;③若B可逆,则A+B可逆;④A-E恒可逆.正确的个数为().
设A为n阶可逆矩阵,a为n维列向量,b为常数.记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.计算并化简PQ;
已知随机变量X的概率密度为f(x)=,求(1)常数a,b的值;(2)。
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3,(b>0)其中A的特征值之和为1,特征值之积为-12.(1)求a,b.(2)用正交变换化f(x1,x2,x3)为标准型.
设(X,Y)服从G={(x,y)|1>y>x>0}上的均匀分布(图3-6),求:X和Y的边缘密度函数.
随机试题
边坡渗沟内应填充(),底部应填充块径不小于30cm的石块。
2,3,(),100,356
虽然天线是互易器件,但用于发射天线的设计无法用于接收天线。()
在田径场地上,计算100米跑的距离是从()。
国有公司仓库保管员李某在值班时将库存物资运出,销账所得3万元。李某的行为构成职务侵占罪。()
路怒症,指机动车驾驶者在行车过程中因焦躁、愤怒情绪而产生攻击性行为。下列不属于路怒症的是()。
A.Createacreativespace.B.Keepanopenmind.C.Anythingispossible.D.Tieintoyourbusinessgoals.E.Don’tneglectthe
Windows2003中,能够获得如下运行结果的命令是()。
Everymeans_____triedbutwithoutmuchresult.
Forthispart,youareallowed30minutestowriteashortessaybasedonthepicturebelow.Youshouldfocusontheharmcaused
最新回复
(
0
)