首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知ξ1,ξ2,…,ξr(r≥3)是Ax=0的基础解系,则下列向量组也是Ax=0的基础解系的是( ).
已知ξ1,ξ2,…,ξr(r≥3)是Ax=0的基础解系,则下列向量组也是Ax=0的基础解系的是( ).
admin
2021-07-27
37
问题
已知ξ
1
,ξ
2
,…,ξ
r
(r≥3)是Ax=0的基础解系,则下列向量组也是Ax=0的基础解系的是( ).
选项
A、α
1
=-ξ
2
-ξ
3
-…-ξ
r
,α
2
=ξ
1
-ξ
3
-ξ
4
-…-ξ
r
,α
3
=ξ
1
+ξ
2
-ξ
4
-…-ξ
r
,…, α
r
=ξ
1
+ξ
2
+…+ξ
r-1
B、β
1
=ξ
2
+ξ
3
+…+ξ
r
,β
2
=ξ
1
+ξ
3
+ξ
4
+…+ξ
r
,β
3
=ξ
1
+ξ
2
+ξ
4
+…+ξ
r
,…, β
r
=ξ
1
+ξ
2
+…+ξ
r-1
C、ξ
1
,ξ
2
,…,ξ
r
的一个等价向量组
D、ξ
1
,ξ
2
,…,ξ
r
的一个等秩向量组
答案
B
解析
β
1
=ξ
2
+ξ
3
+…+ξ
r
,β
2
=ξ
1
+ξ
3
+…+ξ
r
,…,β
3
=ξ
1
+ξ
2
+ξ
4
+…+ξ
r
,…,β
r
=ξ
1
+ξ
2
+…+ξ
r-1
是Ax=0的基础解系.因①由解的性质知,Aβ
i
A(ξ
1
+ξ
2
+…+ξ
i-1
+ξ
i+1
+…+ξ
r
)=0,故β
i
均是Ax=0的解向量.②向量个数为r=n-r(A),与原基础解系向量个数一样多.对(A),当r=3时,α
1
=-ξ
2
-ξ
3
,α
2
=ξ
1
-ξ
3
,α
3
=ξ
1
+ξ
2
.因α
1
-α
2
+α
3
=-ξ
2
-ξ
3
-(ξ
1
-ξ
3
)+ξ
1
+{ξ
2
=0,α
1
,α
2
,α
3
线性相关,故(A)中α
1
,α
2
,…,α
r
不是Ax=0的基础解系.对(C),与ξ
1
,ξ
2
,…,ξ
r
等价的向量组,向量组个数可以超过r个(即与ξ
1
,ξ
2
,…,ξ
r
等价的向量组可能线性相关),对(D),与ξ
1
,ξ
2
,…,ξ
r
等秩的向量组可能不是Ax=0的解向量,且个数也可以超过r,故(A),(C),(D)均不成立.
转载请注明原文地址:https://kaotiyun.com/show/pQy4777K
0
考研数学二
相关试题推荐
设A为m×n矩阵,B为n×m矩阵,且m>n,则必有()
设函数f(χ)在[0,π]上连续,且∫0πf(χ)sinχdχ=0∫0πf(χ)cosχdχ,=0.证明:在(0,π)内f(χ)至少有两个零点.
设A,B为n阶实对称矩阵,则A与B合同的充分必要条件是().
已知y1=xex+e2x和y2=xex+e-x是二阶常系数非齐次线性微分方程的两个解,则此方程为()
如图,曲线段的方程为y=f(x),函数f(x)在区间[0,a]上有连续的导数,则定积∫0axf’(x)dx等于()
设A为m×n矩阵,且r(A)=m,则()
现有四个向量组①(1,2,3)T,(3,一1,5)T,(0,4,一2)T,(1,3,0)T;②(a,1,b,0,0)T,(c,0,d,2,0)T,(e,0,f,0,3)T;③(a,1,2,3)T,(b,1,2,3)T,(c,3,4,5)T,(d,0,
已知线性方程组(1)a,b,c满足何种关系时,方程组仅有零解?(2)a,b,c满足何种关系时,方程组有无穷多组解?并用基础解系表示全部解.
设A是m×n矩阵,AT是A的转置,若η1,η2,…,ηt为方程组ATx=0的基础解系,则r(A)=()
随机试题
教育学史上杰出的幼儿教育思想家、改革家玛利娅·蒙台梭利认为:“儿童的生长是由于内在的生命潜能的发展,使生命力显现出来。人的生命力就是根据遗传确定的生物学规律发展起来的。”()
在环境温度为23℃时,体表温度最低的部位是
李某,32岁,初孕妇,宫内孕39周,于昨天晚上感觉腹部一阵阵发紧,每半个小时一次,每次持续3~5秒钟,今天早上孕妇感觉腹部疼痛,每5~6分钟一次。每次持续45秒左右,请问昨天晚上孕妇的情况是
徒手肌力测定所测肌肉收缩应为
具有下列哪些情形之任何一种,不得担任商业银行的高级管理人员?()
以下与地震相关的叙述中正确的是:
某水利发电企业依据相关要求和规范,组织制定防止事故发生和减少事故损失的安全技术措施。下列举措中,用于防止事故发生的安全技术措施的是()。
合作学习是指学生们以_______的方式代替教师主导教学的一种教学策略。合作学习的目的不仅是培养学生主动求知的能力,而且是发展学生合作过程中的_______能力。
生物柴油一直被誉为是减少我们对化石燃料依赖的可能的解决办法。目前大部分采用生物柴油的车辆使用的都是经过再加工的食用油,这种生物柴油的原材料非常昂贵,而且也很稀缺,因此很难进行大规模商业生产。如果生物柴油想对现实生活产生不可磨灭的真正影响,它就必须直接来源于
简.奥斯汀的小说中有着_________的社会观察、_________的言辞和一些愚笨、可憎的人物,这使她获得了众多“粉丝”,其作品的吸引力_________到今年她的第一部小说《理智与情感》已经出版了200年了。填入划横线部分最恰当的一项是(
最新回复
(
0
)