首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知ξ1,ξ2,…,ξr(r≥3)是Ax=0的基础解系,则下列向量组也是Ax=0的基础解系的是( ).
已知ξ1,ξ2,…,ξr(r≥3)是Ax=0的基础解系,则下列向量组也是Ax=0的基础解系的是( ).
admin
2021-07-27
44
问题
已知ξ
1
,ξ
2
,…,ξ
r
(r≥3)是Ax=0的基础解系,则下列向量组也是Ax=0的基础解系的是( ).
选项
A、α
1
=-ξ
2
-ξ
3
-…-ξ
r
,α
2
=ξ
1
-ξ
3
-ξ
4
-…-ξ
r
,α
3
=ξ
1
+ξ
2
-ξ
4
-…-ξ
r
,…, α
r
=ξ
1
+ξ
2
+…+ξ
r-1
B、β
1
=ξ
2
+ξ
3
+…+ξ
r
,β
2
=ξ
1
+ξ
3
+ξ
4
+…+ξ
r
,β
3
=ξ
1
+ξ
2
+ξ
4
+…+ξ
r
,…, β
r
=ξ
1
+ξ
2
+…+ξ
r-1
C、ξ
1
,ξ
2
,…,ξ
r
的一个等价向量组
D、ξ
1
,ξ
2
,…,ξ
r
的一个等秩向量组
答案
B
解析
β
1
=ξ
2
+ξ
3
+…+ξ
r
,β
2
=ξ
1
+ξ
3
+…+ξ
r
,…,β
3
=ξ
1
+ξ
2
+ξ
4
+…+ξ
r
,…,β
r
=ξ
1
+ξ
2
+…+ξ
r-1
是Ax=0的基础解系.因①由解的性质知,Aβ
i
A(ξ
1
+ξ
2
+…+ξ
i-1
+ξ
i+1
+…+ξ
r
)=0,故β
i
均是Ax=0的解向量.②向量个数为r=n-r(A),与原基础解系向量个数一样多.对(A),当r=3时,α
1
=-ξ
2
-ξ
3
,α
2
=ξ
1
-ξ
3
,α
3
=ξ
1
+ξ
2
.因α
1
-α
2
+α
3
=-ξ
2
-ξ
3
-(ξ
1
-ξ
3
)+ξ
1
+{ξ
2
=0,α
1
,α
2
,α
3
线性相关,故(A)中α
1
,α
2
,…,α
r
不是Ax=0的基础解系.对(C),与ξ
1
,ξ
2
,…,ξ
r
等价的向量组,向量组个数可以超过r个(即与ξ
1
,ξ
2
,…,ξ
r
等价的向量组可能线性相关),对(D),与ξ
1
,ξ
2
,…,ξ
r
等秩的向量组可能不是Ax=0的解向量,且个数也可以超过r,故(A),(C),(D)均不成立.
转载请注明原文地址:https://kaotiyun.com/show/pQy4777K
0
考研数学二
相关试题推荐
设A为m×n矩阵,B为n×m矩阵,且m>n,则必有()
函数f(x)=的无穷间断点的个数是()
求微分方程χy′=yln的通解.
设A为m×n矩阵,且r(A)=m,则()
设常数k>0,函数在(0,+∞)内零点个数为()
设有任意两个n维向量组α1,α2,…,αm和β1,β2,…,βm,若存在两组不全为零的数λ1,λ2,…,λm和k1,k2,…,km,使(λ1+k1)α1+…+(λm+km)αm+(λ1-k1)β1+…+(λm-km)βm=0,则
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是()
设A=有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
已知向量组(I)α1,α2,α3,α4线性无关,则与(I)等价的向量组是()
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解是()
随机试题
经营活动是指企业长期资产的购建和不包括在现金等价物范围内的投资及其处置活动。
男,55岁。上腹部不适2个月。进食后饱胀,有时伴疼痛,食欲下降、乏力,症状逐渐加重。为明确诊断首选的检查是
某房地产的年有效毛收人为10万元,运营费用为2.5万元,有效毛收入乘数为10,则该房地产的综合资本化率为7.5%。()[2008年考题]
剧毒化学品经营企业销售剧毒化学品,应当记录购买单位的名称、地址和购买人员的姓名、身份证号码及所购剧毒化学品的品名、数量、用途。记录应当至少保存()。
刚性路面主要代表是水泥混凝土路面,其破坏主要取决于()。
下列属于控制性进度计划的有()。
对于网络上有人发表过激言论,并且诽谤领导个人。你认为应该如何处理?
使用VC++2010打开考生文件夹下blank1中的解决方案。此解决方案的项目中包含一个源程序文件blank1.c。在此程序中,函数fun的功能是:调用随机函数产生20个互不相同的整数放在形参a所指数组中(此数组在主函数中已置0)。请在程序的下画线处填入
Youwillhardlybelieveit,butthisisthethirdtimetonightsomeone______me.
AmericanGroupDynamicsToday,inWesternresearchinstitutesanduniversitydepartment,muchworkisdoneasateamprojecta
最新回复
(
0
)