首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2005年试题,20)已知二次型f(x1,x2,x3)=(1—a)x12+(1一a)x22+2x32+2(1+a)x1x2的秩为2. 求方程f(x1,x2,x3)=0的解.
(2005年试题,20)已知二次型f(x1,x2,x3)=(1—a)x12+(1一a)x22+2x32+2(1+a)x1x2的秩为2. 求方程f(x1,x2,x3)=0的解.
admin
2013-12-27
68
问题
(2005年试题,20)已知二次型f(x
1
,x
2
,x
3
)=(1—a)x
1
2
+(1一a)x
2
2
+2x
3
2
+2(1+a)x
1
x
2
的秩为2.
求方程f(x
1
,x
2
,x
3
)=0的解.
选项
答案
方程f(x
1
,x
2
,x
3
)=x
1
2
+x
2
2
+2x
3
2
+2x
1
x
2
=(x
1
+x
2
)
2
+2x
3
2
=0即[*]故方程的解是k(1,一1,0)
T
.
解析
本题的综合性较强,涉及到了特征值、特征向量、化二次型为标准型以及方程组求解等知识点.值得注意的是,第(3)问求出y
1
,y
2
,y
3
后,应继续求出x
1
,x
2
,x
3
的值.
转载请注明原文地址:https://kaotiyun.com/show/pR54777K
0
考研数学一
相关试题推荐
设向量组α1=(a,3,1)T,α2=(2,b,3)T,α3=(1,2,1)T,α4=(2,3,1)T的秩为2,求a,b的值及该向量组的一个极大线性无关组,并把其余向量用此极大线性无关组线性表示.
设函数在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f’(x)≠1,证明在(0,1)内方程f(x)=x有且仅有一个实根.
设在区间[0,2]上,|f(x)|≤1,|f”(x)|≤1.证明:对于任意的x∈[0,2],有|f’(x)|≤2.
设函数f(x)在点x0的某邻域内具有一阶连续导数,且,则()
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为x=k(1,-2,3)T+(1,2,-1)T,k为任意常数.试求α1,α2,α3的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数)利用第一问的结论计算定积分
设y1=e-x,y2=2xe-x,y3=3ex是某三阶常系数齐次线性微分方程的解,试确定该微分方程的形式.
适当选取函数ψ(x),作变量代换y=ψ(x)u,将y关于x的微分方程化为u关于x的二阶常系数齐次线性微分方程,求ψ(x)及常数λ,并求原方程满足y(0)=1,y’(0)=0的特解.
一张贴现债券(贴现债券是指期中不付息,期末还本付息的债券)承诺到期还本付息共偿还1025元.由于负债方可能违约,债权人承担可能得不到承诺支付的风险,因而这一债券是一个风险资产.根据金融理论,市场对风险资产的定价将使得其期望收益率等于具有同类风险的资产的期
随机试题
下列离子方程式正确的是()。
我国新民主主义革命胜利后建立的是()
β2-受体兴奋剂在应用两周后,常引起β2-受体下调,支气管舒张作用减弱。下列哪种药物可促进β2-受体功能的恢复?
男。1个月。咳嗽1天,发热3小时T39.3℃,就诊过程中突然双眼上翻,肢体强直,持续1分钟。查体:咽红,心肺腹及神经系统无异常,半年前也有相同病史,最可能诊断是( )
我国科技发展按照()的方针i总体跟进,重点突破,提高科技持续创新能力,实现技术跨越式发展。
【真题(中级)】电子数据审计中,数据采集的方式有()。
发行国库券是()形式。
2016年1月,甲、乙、丙、丁、戊共同出资设立A有限合伙企业(以下简称“A企业”),从事产业投资活动。其中,甲、乙、丙为普通合伙人,丁、戊为有限合伙人。丙负责执行合伙事务。2017年2月,丙请丁物色一家会计师事务所,以承办本企业的审计业务。丁在合伙人会议
旅游是人类精神生活的需要,旅游者通过旅游陶冶情操,发展个性,调节心理平衡,净化心灵。因此,导游服务的核心内容是()。
A.tofindjobsB.todolow-skilllobsC.tofeeditspeopleD.tohandledisputesE.tomakeaprofitF.toworryabouttheBr
最新回复
(
0
)